Красота

Что происходит с металлом при нагреве. Зависимость размеров тел от температуры — Гипермаркет знаний Темы кодификатора ЕГЭ: изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в

Тема: Неживая природа

Урок: Свойства воды в жидком состоянии

В чистом виде вода не имеет вкуса, запаха и цвета, но она почти никогда не бывает такой, потому что активно растворяет в себе большинство веществ и соединяется с их частицами. Так же вода может проникать в различные тела (ученые нашли воду даже в камнях).

Хлор имеет слабый момент: он может реагировать на образование хлораминов и хлорированных углеводородов, которые являются опасными канцерогенами. Побочным продуктом этой реакции является хлорит. Токсикологические исследования показали, что побочный продукт дезинфекции диоксида хлора, хлорита, не представляет значительного риска для здоровья человека. Не стесняйтесь обращаться к нам, если у вас есть другие вопросы.

Наши дети видят мир по-другому. Ничто не может избежать их внимания, и их любопытство не имеет границ. Они постоянно задают вопросы и хотят ответить на этот вопрос. Но проблемы с детьми часто мешают нам. Мы будем делиться с вами наиболее часто задаваемыми вопросами и их ответами, чтобы подготовиться в следующий раз.

Если в стакан набрать воды из-под крана, она будет казаться чистой. Но на самом деле, это - раствор многих веществ, среди которых есть газы (кислород, аргон, азот, углекислый газ), различные примеси, содержащиеся в воздухе, растворенные соли из почвы, железо из водопроводных труб, мельчайшие нерастворенные частицы пыли и др.

Когда вода нагревается, ее молекулы начинают двигаться. По мере увеличения этого движения расстояние между молекулами становится больше. Наконец, наступает время, когда отношения между молекулами становятся слишком слабыми. Молекулы рассеяны и становятся водяными парами. Этот процесс называется «испарение».

Что держит самолеты в воздухе? Что держит огромный воздух в воздухе? Сила работы здесь называется «подъем». Подъем происходит, когда воздух проходит выше и ниже крыла плоскости в одно и то же время. Поскольку воздух движется быстрее, чем кончик крыла, он оказывает меньшее давление. В то же время плотный воздух под крыльями подталкивает самолет вверх. Чем выше скорость движения самолета, тем выше подъем.

Если нанести пипеткой капельки водопроводной воды на чистое стекло и дать ей испариться, останутся едва заметные пятнышки.

В воде рек и ручьев, большинства озер содержатся различные примеси, например, растворенные соли. Но их немного, потому что эта вода - пресная.

Если рассматривать отдельно, каждая снежинка бесцветна и прозрачна. Ответ заключается в том, что, когда снежинки образуют большую массу, они отражают солнечный свет. Отраженный свет белый, потому что солнце также белое. Почему человеческие волосы не могут быть натуральными?

Человеческие волосы содержат пигменты, которые делают его черным, коричневым, светлым или красным. Наши волосы также содержат небольшие пузырьки воздуха. Комбинации пигментов и количество пузырьков воздуха в волосах определяют цвет. Пигменты, которые встречаются в наших волосах, не могут привести к синему или зеленому при сочетании.

Вода течет на земле и под землей, наполняет ручьи, озера, реки, моря и океаны, создает подземные дворцы.

Прокладывая себе путь сквозь легкорастворимые вещества, вода проникает глубоко под землю, унося их с собой, и через щелочки и трещинки в скальных породах, образуя подземные пещеры, капает с их свода, создавая причудливые скульптуры. Миллиарды капелек воды за сотни лет испаряются, а растворенные в воде вещества (соли, известняки) оседают на сводах пещеры, образуя каменные сосульки, которые называют сталактитами.

Почему космонавты путешествуют в космосе? Вопреки тому, что многие думают, астронавты на борту Международной космической станции не свободны от гравитации. Серьезность Земли влияет на все объекты на орбите. Но большая высота, на которой расположена станция, делает это падением навсегда. Как будто орбитальный объект все еще не касается поверхности нашей планеты и вместо этого летает над Землей. Представьте себе кабину лифта, падающую с верхнего этажа небоскреба. Человек внутри этой кабины будет испытывать временную невесомость.

Космонавты на орбите испытывают то же самое, но постоянно. Поскольку солнечные лучи попадают в атмосферу планеты, они разбросаны и разбиты. Первоначально белый солнечный свет делится на 7 цветов радуги. Поскольку синий рассеивается больше, чем другие цвета, он доминирует. Но небо никогда не бывает совершенно голубым из-за присутствия других цветов в спектре.

Сходные образования на полу пещеры называются сталагмитами.

А когда сталактит и сталагмит срастается, образуя каменную колонну, это называют сталагнатом.

Туман состоит из тысяч крошечных капель воды или кристаллов льда, висящих в воздухе чуть выше земли. Он образуется, когда воздух холодный, а земля теплая или наоборот. В обоих случаях появляется густое облачное облако водяного пара или ледяные частицы и распространяется по поверхности.

Вода образуется в результате химической реакции , в которой водород окисляется кислородом и выделяется тепло. Поскольку он уже отступил, вода не может гореть в естественных условиях. Почему часы вращаются по часовой стрелке? Перед созданием механических часов люди используют солнцезащитные часы, чтобы понять, сколько времени это происходит. Солнечные часы появляются впервые в Северном полушарии, где движение солнца заставляет тени двигаться слева направо. Позже в истории механических часов они наследуют это движение от солнца.

Наблюдая ледоход на реке, мы видим воду в твердом (лед и снег), жидком (текущая под ним) и газообразном состоянии (мельчайшие частицы воды, поднимающиеся в воздух, которые ещё называют водяным паром).

Круглая форма идеально подходит для прокатки на ровных поверхностях. Поскольку все точки на колесе равноудалены от их оси, ось остается на той же высоте над землей, и транспортное средство не перемещается вверх и вниз по мере продвижения по дороге. Помимо гарантии того, что наше нижнее белье обеспечивает, оно также защищает наши интимные части от инфекций и травм. Гигиена - главная причина того, что мы носите нижнее белье. Раньше одежда была очень дорогой, и люди часто не могли их менять.

Эта попытка занимает немного больше времени, поэтому планируйте ее на две встречи и постепенно «вырастите» декоративные, съедобные и несъедобные кристаллы. Вы можете создать кристальный дисплей, кристаллы, чтобы назвать себя, создавать кристальные изображения, с нетерпением ждать ваших идей и фотографий.

Вода может одновременно находится во всех трех состояниях: в воздухе всегда есть водяной пар и облака, которые состоят из капелек воды и кристалликов льда.

Водяной пар невидим, но его можно легко обнаружить, если оставить в теплой комнате охлаждавшийся в холодильнике в течение часа стакан с водой, на стенках которого сразу появятся капельки воды. При соприкосновении с холодными стенками стакана, водяной пар, содержащийся в воздухе, преобразуется в капельки воды и оседает на поверхности стакана.

Съедобные и несъедобные кристаллы Вы можете открыть и загрузить весь текст или. Тема: Кристаллизация, насыщенные решения. Твердые вещества делятся на аморфные и кристаллические вещества. Расположение частиц аморфных веществ является случайным, и их структура напоминает структуру жидкостей. Частицы кристаллических веществ расположены в кристаллической решетке. Основой этой сетки является элементарная ячейка, которая постоянно повторяется.

Кристаллизация или кристаллизация - явление, в котором твердые регулярные кристаллы образуются жидкостью из-за окружающей среды. Кристаллы могут образовываться из растворов, расплавов или паров, где изменение давления, температуры или концентрации вещества может привести к кристаллизации. Для плавности процесса требуется хотя бы одно из следующих условий: Снижение температуры исходной жидкости. Увеличение концентрации кристаллизатора из-за испарения растворителя. Подкисление исходного материала кристаллизатором.

Рис. 11. Конденсат на стенках холодного стакана ()

По этой же причине в холодное время года запотевает внутренняя сторона оконного стекла. Холодный воздух не может содержать столько же водяного пара, сколько и теплый, поэтому какое-то его количество конденсируется - превращается в капельки воды.

Кристаллизация из раствора происходит при растворении кристаллизационного вещества до насыщения раствора при данной температуре. После нагревания раствор снова становится ненасыщенным, но при охлаждении или выпаривании растворителя раствор становится чрезмерно насыщенным и происходит кристаллизация. Естественная кристаллизация происходит после образования ядер ядра зародышеобразования. Кристаллизация также может быть искусственно вызвана так называемой инокуляцией - путем введения инородного тела в раствор, причем этот метод используется, например, при производстве сахара.

Белый след за летящим в небе самолетом - тоже результат конденсации воды.

Если поднести к губам зеркальце и выдохнуть, на его поверхности останутся мельчайшие капельки воды, это доказывает то, что при дыхании человек вдыхает с воздухом водяной пар.

Название происходит от арабского бурака - белого. Дальнейшее использование в химической и пищевой промышленности, стекла, бумаги, сельского хозяйства в качестве удобрения и для кузнечной сварки. Для этих целей он также готовят искусственно. Инструменты: бура, чайник, вода, прозрачное стекло, вертеть или солома, нить или проволока, очиститель труб, пищевой краситель, ложка.

Конструкция: Мы формируем любую форму из очистителя труб. Мы прикрепляем эту форму к нити или проволоке. Мы вешаем палку на ложку или солому. В чайнике мы поливаем воду и выливаем ее в стакан. В воде перемешать буру до получения насыщенного раствора. Если остаточная бура остается в контейнере, восстановите раствор в чистое стекло. Используя шашлык, повесьте наше тело из волосатой проволоки в стекло, чтобы оно полностью погрузилось в раствор насыщенной буры, который мы создали, и что он не прикасается к стенам и нижней части стекла в любой момент времени.

При нагревании вода «расширяется». Это может доказать простой опыт: в колбу с водой опустили стеклянную трубку и замерили уровень воды в ней; затем колбу опустили в сосуд с теплой водой и после нагревания воды повторно замерили уровень в трубке, который заметно поднялся, поскольку вода при нагревании увеличивается в объеме.

Вся система остается на ночь в растворе, так что бура может кристаллизоваться. Объяснение: пушистый провод - это место, где ядра кристаллизации очень хорошо сформированы, к которым кристаллы буры постепенно упаковываются, а кристалл растет. Кристаллизация ускоряется с использованием горячей воды для образования насыщенного раствора и охлаждения и выпаривания, чтобы сделать избыток раствора.

Время: подготовка эксперимента и подготовка всех вспомогательных средств 5 минут. Испытание эксперимента5 мин. Рост кристаллов24 часа. Обозначение кристаллов. Оценка 10 минут. Тест 5 минут. Через 25 минут и 24 часа. Возможно дальнейшее обсуждение эксперимента и его модификация.

Рис. 14. Колба с трубкой, цифрой 1 и чертой обозначен первоначальный уровень воды

Рис. 15. Колба с трубкой, цифрой 2 и чертой обозначен уровень воды при нагревании

Он выражает, как изменяется внутренняя энергия, т.е. сумма энергии движения и положения частиц тела, когда это тело охлаждается или увеличивает его температуру. Тепло равно энергии, которую теплый корпус обеспечивает во время теплообмена. Теплоотдача Протекает через излучение.

Во всех состояниях молекулы находятся в постоянном неупорядоченном движении. Каждая частица имеет свое собственное место, вибрирующее вокруг него. Когда частицы нагреваются, они быстрее вибрируют. Когда температура увеличивается достаточно, частицы будут вырываться из их фиксированного положения и начать свободно перемещаться. На этом этапе твердое вещество начнет превращаться в жидкость. Мы называем это происходящим плавлением, и мы говорим, что ткань тает.

При охлаждении вода «сжимается». Это может доказать сходный опыт: в этом случае колбу с трубкой опустили в сосуд со льдом, после охлаждения уровень воды в трубке понизился относительно первоначальной отметки, потому что вода уменьшилась в объеме.

Затвердевание Когда жидкость охлаждается, она начинает затвердевать при определенной температуре и изменяется на ткань. Частицы, которые движутся свободно, двигаются медленнее по мере того, как температура уменьшается, пока они не сойдутся и не осядут в определенном положении, вокруг которого они затем вибрируют. Жидкость становится твердой. Мы называем это затвердеванием, и мы говорим, что вещество затвердеет.

Кипячение происходит, когда жидкость нагревается до точки кипения. Точка кипения отличается для разных жидкостей. Температура кипения также зависит от давления над жидкостью. Это также влияет на кипение в сосудах значительной высоты. Жидкость переходит в газ только с поверхности. Испаряющая жидкость удаляет тепло из окружающей среды. Испарение происходит при любой температуре жидкости.

Рис. 16. Колба с трубкой, цифрой 3 и чертой обозначен уровень воды при охлаждении

Так происходит, потому что частицы воды, молекулы, при нагревании движутся быстрее, сталкиваются между собой, отталкиваются от стенок сосуда, расстояние между молекулами увеличивается, и поэтому жидкость занимает больший объем. При охлаждении воды движение её частиц замедляется, расстояние между молекулами уменьшается, и жидкости требуется меньший объем.

Государственные вопросы Планы уроков, студенческие мероприятия и графические организаторы

Тем выше температура, тем быстрее испарение, размеры поверхности до поверхности, более быстрое испарение, свойства жидкости, поток газа над жидкостью, давление газового пара над жидкостью. Материя может быть описана как нечто, что занимает пространство в нашей вселенной. Тип частиц и способ расположения частиц определяют, как будет выглядеть этот вопрос и что он может сделать. Хорошее понимание состояния материи является ключом к описанию вселенной вокруг нас.

Свойства различных состояний вещества

Тип индивидуального или группового назначения.

Рис. 17. Молекулы воды обычной температуры

Рис. 18. Молекулы воды при нагревании

Рис. 19. Молекулы воды при охлаждении

Такими свойствами обладает не только вода, но и другие жидкости (спирт, ртуть, бензин, керосин).

Знание этого свойства жидкостей привело к изобретению термометра (градусника), где используется спирт или ртуть.

При замерзании вода расширяется. Это можно доказать, если емкость, наполненную до краев водой, неплотно накрыть крышкой и поставить в морозильную камеру, через время мы увидим, что образовавшийся лед приподнимет крышку, выйдя за пределы емкости.

Это свойство учитывается при прокладывании водопроводных труб, которые обязательно утепляются, чтобы при замерзании образовавшийся из воды лед не разорвал трубы.

В природе замерзающая вода может разрушать горы: если осенью в трещинах скал скапливается вода, зимой она замерзает, и под напором льда, который занимает больший объем, чем вода, из которой он образовался, горные породы трескаются и разрушаются.

Вода, замерзающая в трещинах дорог, приводит к разрушению асфальтового покрытия.

Длинные гребни, напоминающие складки, на стволах деревьев - раны от разрывов древесины под напором замерзающего в ней древесного сока. Поэтому в холодные зимы можно услышать треск деревьев в парке или в лесу.

  1. Вахрушев А.А., Данилов Д.Д. Окружающий мир 3. М.: Баллас.
  2. Дмитриева Н.Я., Казаков А.Н. Окружающий мир 3. М.: ИД «Федоров».
  3. Плешаков А.А.Окружающий мир 3. М.: Просвещение.
  1. Фестиваль педагогических идей ().
  2. Наука и образование ().
  3. Открытый класс ().
  1. Составьте короткий тест (4 вопроса с тремя вариантами ответа) на тему «Вода вокруг нас».
  2. Проведите небольшой опыт: стакан с очень холодной водой поставьте на стол в теплой комнате. Опишите, что будет происходить, объясните, почему.
  3. *Нарисуйте движение молекул воды в нагретом, нормальном и охлажденном состоянии. Если нужно, сделайте подписи на своем рисунке.

Вода - наиболее распространенное вещество на планете, обладающее особенностью, отличающей ее от других жидкостей: при нагреве от точки плавления вплоть до 40 °C ее сжимаемость увеличивается, а а затем уменьшается.

Уникальные свойства воды

На Земле нет вещества более важного для человека, чем вода. Океаны и моря занимают ¾ поверхности планеты, еще 20% поверхности суши покрыто снегами и льдом - твердой водой. Если бы не вода, непосредственно влияющая на климат, Земля превратилась бы в безжизненный камень, летящий сквозь космос.

За сутки человечество расходует минимум 1 млрд тонн воды, при этом общее количество ресурса на планете остается прежним. Миллионы лет тому назад на поверхности Земли было столько же воды, как сейчас.

Живые организмы, населяющие планету, научились приспосабливаться к неблагоприятным условиям. Но ни одно существо не может существовать без воды - это вещество содержится во всех животных и растениях. Тело человека состоит из воды на ¾.

Содержание воды в теле человека

Основные свойства воды:

Не имеет цвета;

Прозрачна;

Не имеет запаха и вкуса;

Способна пребывать в трех агрегатных состояниях;

Способна переходить из одного в другое агрегатное состояние;

Опыт, демонстрирующий свойства воды при нагревании и охлаждении

Для проведения эксперимента в домашних условиях потребуется две ёмкости и две лабораторные колбы с газоотводной трубкой, а также вещества: лед, горячая вода и вода комнатной температуры.

В две одинаковые колбы наливаем воду комнатной температуры, отмечаем уровень воды меткой и опускаем в две емкости - с горячей водой и со льдом. Какой результат эксперимента? Вода в колбе, опущенная в горячую воду , поднимается выше метки. Вода в колбе, помещенная в лед, опускается ниже метки.

Вывод: в результате нагревания вода расширяется, а при охлаждении она сжимается.

Опыт, демонстрирующий свойства воды при хранении в разных условиях

Эксперимент проводится в домашних условиях вечером. Наполняем три одинаковые емкости (подойдут стаканы) водой по 100 мл. Один стакан ставим на подоконник, второй - на стол, третий - возле батареи.

Утром сравниваем результаты: в стакане, оставленном на подоконнике, вода испарилась на 1/3, в стакане на столе вода испарилась наполовину, стакан возле батареи оказался пустым и сухим: вода из него испарилась. Вывод: испарение воды зависит от температуры окружающей среды, и чем она выше, тем быстрее вода испаряется.

Превращение водяного пара в воду

Для проведения эксперимента подготавливаем специальное оборудование:

Спиртовку;

Металлическую пластину;

Колбу с газоотводной трубкой.

В колбу наливаем воду и нагреваем на спиртовке до закипания. Возле газоотводной трубки держим холодную металлическую пластину - на ней оседает пар в виде капелек воды. Превращение газообразной воды в жидкость называется конденсацией. Вывод: при сильном нагревании вода превращается в пар и возвращается в жидкое состояние при соприкосновении с холодной поверхностью.

Конденсат на стеклянной поверхности

Нагревание воды до состояния кипения

Вода, достигающая точки кипения, обладает характерными признаками: жидкость бурлит, внутри появляются пузырьки, поднимается густой пар. Это происходит, потому что молекулы воды при нагревании получают от источника тепла дополнительную энергию и быстрее двигаются. При длительном нагревании жидкость достигает точки кипения: на стенках посуды появляются пузырьки.

Heated water

Если кипение не остановить, процесс продолжается до тех пор, пока вся вода не превращается в газ. При увеличении температуры давление усиливается, молекулы воды двигаются быстрее и преодолевают межмолекулярные силы, которые их связывают. Атмосферное давление противостоит давлению пара. Вода закипает, когда давление пара превышает внешнее давление или достигает его значения.

Провода летом провисают намного силь­нее, чем зимой, т. е. летом они длиннее. Если набрать полную бу­тылку холодной воды и поставить в теплое место, то со временем часть воды из бутылки выльется, так как во время нагревания вода расширяется. Воздушный шарик, вынесенный из комнаты на мороз, уменьшается в объеме.

1. Убеждаемся в тепловом расширении твердых тел, жидкостей и газов

Несложные опыты и многочисленные на­блюдения убеждают нас в том, что, как прави­ло, твердые тела, жидкости и газы во время нагревания расширяются, а во время охлажде­ния сжимаются.

Тепловое расширение жидкостей и газов лег­ко наблюдать с помощью колбы, шейка которой плотно закупорена, а в пробку вставлена стек­лянная трубка. Перевернем колбу, заполненную воздухом, в сосуд с водой.

Теперь достаточно взяться за колбу рукой, и в скором времени воз­дух, расширяясь в колбе, будет выходить в виде пузырьков из трубки под водой (рис. 2.30).

Теперь наполним колбу какой-нибудь подкра­шенной жидкостью и закупорим так, чтобы часть жидкости вошла в трубку (рис. 2.31, а). Обозна­чим уровень жидкости в трубке и опустим колбу в сосуд с горячей водой. В первый момент уровень жидкости немного снизится (рис. 2.31, б), и это можно объяснить тем, что сначала нагревается и расширяется колба, а уже потом, нагреваясь, расширяется вода.

Рис. 2.30. При нагревании воз­дух в колбе расширяется и часть его выходит из колбы - это видно по пузырькам воздуха, выходящим из трубки


Рис. 2.31 Опыт, демонстрирующий, что при нагревании жидкость (как твердые тела и газы) расширяется: а - закрытая пробкой колба с жидкостью в трубке; б - в первый момент нагрева­ния уровень жидкости немного снижается; в - при дальнейшем нагревании уровень жидкости значительно повышается

В скором времени мы убедим­ся, что по мере нагревания колбы и воды в ней уровень жидкости в трубке заметно повысится (рис. 2.31, в). Итак, твердые тела и жидкости, как и газы, во время нагревания расширяются. Исследовательским путем выяснено, что твердые тела и жидкости во время нагревания расширяются намного меньше, чем газы.

Тепловое расширение твердых тел можно продемонстрировать также на следующем опы­те. Возьмем медный шарик, который в ненагре­том состоянии легко проходит сквозь пригнан­ное к нему кольцо. Нагреем шарик в пламени спиртовки и убедимся в том, что шарик теперь не будет проходить сквозь кольцо (рис. 2.32, а). После охлаждения шарик снова легко пройдет сквозь кольцо (рис. 2.32, б).

2. Выясняем причину теплового расширения

В чем же причина увеличения объема тел во время нагревания, ведь количество молекул с увеличением температуры не изменяется?

Атомно-молекулярная теория объясняет теп­ловое расширение тел тем, что с увеличением температуры увеличивается скорость движения атомов и молекул. В результате увеличивается среднее расстояние между атомами (молекулами).


Рис. 2.32. Опыт, иллюстрирую­щий тепловое расширение твер­дых тел: а - в нагретом состоя­нии шарик не проходит сквозь кольцо; б - после охлаждения шарик проходит сквозь кольцо

Соответственно, увеличивает­ся объем тела. И наоборот, чем ниже температура вещества, тем меньше межмолекулярные промежутки. Исключением является вода, чугун и некоторые дру­гие вещества. Вода, например, расширяется только при температуре выше 4 °С; при температуре от О 0C до 4 0C объем воды во время нагревания уменьшается.

3. Характеризуем тепловое расширение твердых тел

Выясним, как изменяются линейные размеры твердого тела вследствие изменения температуры . Для этого измерим длину алюминиевой трубки, по­том нагреем трубку, пропуская сквозь нее горячую воду. Спустя некоторое время можно заметить, что длина трубки незначительно увеличилась.

Заменив алюминиевую трубку стеклянной такой же длины, мы убедим­ся, что в случае одинакового увеличения температуры длина стеклянной трубки увеличивается намного меньше, чем длина алюминиевой. Таким об­разом, делаем вывод: тепловое расширение тела зависит от вещества, из которого оно изготовлено.

Физическая величина , характеризующая тепловое расширение материала и численно равная отношению изменения длины тела вследствие его нагрева­ния на I °С и его начальной длины, называется температурным коэффициен­том линейного расширения.

Температурный коэффициент линейного расширения обозначается сим­волом а и вычисляется по формуле:


Из определения температурного коэффициента линейного расширения можно получить единицу этой физической величины:

Ниже в таблице приведены температурные коэффициенты линейного расширения некоторых веществ.

4. Знакомимся с тепловым расширением в природе и технике

Способность тел расширяться во время нагревания и сжиматься во время охлажде­ния играет очень важную роль в природе. По­верхность Земли прогревается неравномерно. В результате воздух вблизи Земли также рас­ширяется неравномерно, и образуется ветер, предопределяющий изменение погоды. Нерав­номерное прогревание воды в морях и океанах приводит к возникновению течений, которые существенно влияют на климат. Резкие коле­бания температуры в горных районах вызыва­ют расширение и сжатие горных пород. А по­скольку степень расширения зависит от вида породы, то расширения и сжатия происходят неравномерно, и в результате образуются тре­щины, которые приводят к разрушению этих пород.

Тепловое расширение приходится прини­мать во внимание при строительстве мостов и линий электропередач, прокладывании труб отопления, укладке железнодорожных рельсов, изготовлении железобетонных конструк­ций и во многих других случаях.

Явление теплового расширения широко ис­пользуется в технике и быту. Так, для авто­матического замыкания и размыкания элект­рических цепей используют биметаллические пластинки - они состоят из двух полос с раз­ным коэффициентом линейного расширения (рис. 2.33). Тепловое расширение воздуха по­могает равномерно прогреть квартиру, охла­дить продукты в холодильнике , проветрить комнату.

Рис. 2.33. Для изготовления авто­матических предохранителей (а), для автоматического включения и выключения нагревательных приборов (б) широко используют­ся биметаллические пластинки (в). Один из металлов при увеличении температуры расширяется намно­го больше, чем другой, в результа­те этого пластинка изгибается (г) и размыкает­ся (или замыкается)

5. Учимся решать задачи

Длина стального железнодорожного рельса при температуре О о C равна 8 г. На сколько увеличится его длина в зной­ный летний день при температуре 40 °С?

Анализ условия задачи. Зная, как изменя­ется длина стальной детали вследствие нагре­вания на 1 °С, т. е. зная температурный ко­эффициент линейного расширения стали, мы найдем, на сколько изменится длина рельса вследствие нагревания на 40 °С. Температурный коэффициент линейного расширения стали найдем по таб­лице, приведенной выше.


  • Подводим итоги

Твердые тела, жидкости и газы во время нагревания, как правило, расширяются. Причина теплового расширения в том, что с увеличением температуры увеличивается скорость движения атомов и молекул. В ре­зультате увеличивается среднее расстояние между атомами (молекулами). Тепловое расширение твердых веществ характеризуется коэффициентом ли­нейного расширения. Коэффициент линейного расширения численно равен отношению изменения длины тела вследствие нагревания его на 1 о C и его начальной длины

  • Контрольные вопросы

1. Приведите примеры, подтверждающие, что твердые тела, жидкос­ти и газы расширяются во время нагревания.

2. Опишите опыт, де­монстрирующий тепловое расширение жидкостей.

3. В чем причина увеличения объема тел во время нагревания?

4. От чего, кроме тем­пературы, зависит изменение размеров тел во время их нагревания (охлаждения)?

5. В каких единицах измеряется коэффициент ли­нейного расширения?

  • Упражнения

1. Выберите все правильные ответы. Когда тело охлаждается, то:

а) скорость движения его молекул уменьшается;
б) скорость движения его молекул увеличивается;
в) расстояние между его молекулами уменьшается;
г) расстояние между его молекулами увеличивается.

2. Как изменится объем воздушного шарика, если мы перенесем его из холодного помещения в теплое? Почему?
3. Что происходит с расстояниями между частичками жидкости в тер­мометре в случае похолодания?
4. Правильным ли является утверждение, что во время нагревания тело увеличивает свои размеры, так как размеры его молекул уве­личиваются? Если нет, предложите свой, исправленный, вариант.
5 . Зачем на точных измерительных приборах указывают темпера­туру?
6. Вспомните опыт с медным шариком, который вследствие нагрева­ния застревал в кольце (см. рис. 2.32). Как изменились вследствие нагревания: объем шара; его масса; плотность; средняя скорость движения атомов?
7. После того как пар кипящей воды пропустили через латунную трубку, длина трубки увеличилась на 1,62 мм. Чему равен коэффи­циент линейного расширения латуни, если при температуре 15 0C
длина трубки равна 1 м? Напоминаем, что температура кипящей воды равна 100 °С.
8. Платиновый провод длиной 1,5 м находился при температуре 0 °С. Вследствие пропускания электрического тока провод раскалился и удлинился на 15 мм. До какой температуры он был нагрет?
9. Медный лист прямоугольной формы, размеры которого при темпе­ратуры 20 0C составляют 60 см х 50 см, нагрели до 600 °С. Как из­менилась площадь листа?

  • Экспериментальные задания

1. Как, имея дощечку, молоток, два гвоздика, спиртовку и пинцет, показать, что размер монеты в 5 копеек во время нагревания уве­личивается? Выполните соответствующий опыт. Объясните наблю­даемое явление.

2. Наполните бутылку водой так, чтобы внутри остался пузырек воз­духа. Нагрейте бутылку в горячей воде. Проследите, как изменят­ся размеры пузырька. Объясните результат..

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации
Темы кодификатора ЕГЭ : изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.

Лёд, вода и водяной пар - примеры трёх агрегатных состояний вещества: твёрдого, жидкого и газообразного. В каком именно агрегатном состоянии находится данное вещество - зависит от его температуры и других внешних условий, в которых оно находится.

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы - изменения агрегатных состояний вещества тела. Нас будут интересовать следующие фазовые переходы .

Плавление (твёрдое тело жидкость) и кристаллизация (жидкость твёрдое тело).
Парообразование (жидкость пар) и конденсация (пар жидкость).

Плавление и кристаллизация

Большинство твёрдых тел являются кристаллическими , т.е. имеют кристаллическую решётку - строго определённое, периодически повторяющееся в пространстве расположение своих частиц.

Частицы (атомы или молекулы) кристаллического твёрдого тела совершают тепловые колебания вблизи фиксированных положений равновесия - узлов кристаллической решётки.

Например, узлы кристаллической решётки поваренной соли - это вершины кубических клеток «трёхмерной клетчатой бумаги» (см. рис. 1 , на котором шарики большего размера обозначают атомы хлора (изображение с сайта en.wikipedia.org.)); если дать испариться воде из раствора соли, то оставшаяся соль будет нагромождением маленьких кубиков.

Рис. 1. Кристаллическая решётка

Плавлением называется превращение кристаллического твёрдого тела в жидкость. Расплавить можно любое тело - для этого нужно нагреть его до температуры плавления , которая зависит лишь от вещества тела, но не от его формы или размеров. Температуру плавления данного вещества можно определить из таблиц.

Наоборот, если охлаждать жидкость, то рано или поздно она перейдёт в твёрдое состояние. Превращение жидкости в кристаллическое твёрдое тело называется кристаллизацией или отвердеванием . Таким образом, плавление и кристаллизация являются взаимно обратными процессами.

Температура, при которой жикость кристаллизуется, называется температурой кристаллизации . Оказывается, что температура кристаллизации равна температуре плавления: при данной температуре могут протекать оба процесса. Так, при лёд плавится, а вода кристаллизуется; что именно происходит в каждом конкретном случае - зависит от внешних условий (например, подводится ли тепло к веществу или отводится от него).

Как происходят плавление и кристаллизация? Каков их механизм? Для уяснения сути этих процессов рассмотрим графики зависимости температуры тела от времени при его нагревании и охлаждении - так называемые графики плавления и кристаллизации.

График плавления

Начнём с графика плавления (рис. 2 ). Пусть в начальный момент времени (точка на графике) тело является кристаллическим и имеет некоторую температуру .

Рис. 2. График плавления

Затем к телу начинает подводиться тепло (скажем, тело поместили в плавильную печь), и температура тела повышается до величины - температуры плавления данного вещества. Это участок графика.

На участке тело получает количество теплоты

где - удельная теплоёмкость вещества твёрдого тела, - масса тела.

При достижении температуры плавления (в точке ) ситуация качественно меняется. Несмотря на то, что тепло продолжает подводиться, температура тела остаётся неизменной. На участке происходит плавление тела - его постепенный переход из твёрдого состояния в жидкое. Внутри участка мы имеем смесь твёрдого вещества и жидкости, и чем ближе к точке , тем меньше остаётся твёрдого вещества и тем больше появляется жидкости. Наконец, в точке от исходного твёрдого тела не осталось ничего: оно полностью превратилось в жидкость.

Участок соответствует дальнейшему нагреванию жидкости (или, как говорят, расплава ). На этом участке жидкость поглощает количество теплоты

где - удельная теплоёмкость жидкости.

Но нас сейчас больше всего интересует - участок фазового перехода. Почему не меняется температура смеси на этом участке? Тепло-то подводится!

Вернёмся назад, к началу процесса нагревания. Повышение температуры твёрдого тела на участке есть результат возрастания интенсивности колебаний его частиц в узлах кристаллической решётки: подводимое тепло идёт на увеличение кинетической энергии частиц тела (на самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами - как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.).

Кристаллическая решётка расшатывается всё сильнее и сильнее, и при температуре плавления размах колебаний достигает той предельной величины, при которой силы притяжения между частицами ещё способны обеспечивать их упорядоченное расположение друг относительно друга. Твёрдое тело начинает «трещать по швам», и дальнейшее нагревание разрушает кристаллическую решётку - так начинается плавление на участке .

С этого момента всё подводимое тепло идёт на совершение работы по разрыву связей, удерживающих частицы в узлах кристаллической решётки, т.е. на увеличение потенциальной энергии частиц. Кинетическая энергия частиц при этом остаётся прежней, так что температура тела не меняется. В точке кристаллическая структура исчезает полностью, разрушать больше нечего, и подводимое тепло снова идёт на увеличение кинетической энергии частиц - на нагревание расплава.

Удельная теплота плавления

Итак, для превращения твёрдого тела в жидкость мало довести его до температуры плавления. Необходимо дополнительно (уже при температуре плавления) сообщить телу некоторое количество теплоты для полного разрушения кристаллической решётки (т.е. для прохождения участка ).

Это количество теплоты идёт на увеличение потенциальной энергии взаимодействия частиц. Следовательно, внутренняя энергия расплава в точке больше внутренней энергии твёрдого тела в точке на величину .

Опыт показывает, что величина прямо пропорциональна массе тела:

Коэффициент пропорциональности не зависит от формы и размеров тела и является характеристикой вещества. Он называется удельной теплотой плавления вещества . Удельную теплоту плавления данного вещества можно найти в таблицах.

Удельная теплота плавления численно равна количеству теплоты, необходимому для превращения в жидкость одного килограмма данного кристаллического вещества, доведённого до температуры плавления.

Так, удельная теплота плавления льда равна кДж/кг, свинца - кДж/кг. Мы видим, что для разрушения кристаллической решётки льда требуется почти в раз больше энергии! Лёд относится к веществам с большой удельной теплотой плавления и поэтому весной тает не сразу (природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг).

График кристаллизации

Теперь перейдём к рассмотрению кристаллизации - процесса, обратного плавлению. Начинаем с точки предыдущего рисунка. Предположим, что в точке нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. (3) .

Рис. 3. График кристаллизации

Жидкость остывает (участок ), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления .

С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке происходит кристаллизация расплава - его постепенный переход в твёрдое состояние. Внутри участка мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке , тем больше становится твёрдого вещества и тем меньше - жидкости.Наконец,вточке жидкостинеостаётсявовсе-онаполностьюкристаллизовалась.

Следующий участок соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации.

Нас опять-таки интересует участок фазового перехода : почему температура остаётся неизменной, несмотря на уход тепла?

Снова вернёмся в точку . После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн.

Когда температура расплава понизится до температуры кристаллизации (точка ), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство.

Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия - кристаллизующаяся жидкость является источником тепла (часто у проруби можно увидеть сидящих птиц. Они там греются!). Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке не меняется.

В точке расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок ).

Как показывает опыт, при кристаллизации на участке выделяется ровно то же самое количество теплоты , которое было поглощено при плавлении на участке .

Парообразование и конденсация

Парообразование - это переход жидкости в газообразное состояние (в пар ). Существует два способа парообразования: испарение и кипение.

Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка «Насыщенный пар», причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.

Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу - тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее - вода, намного медленнее воды испаряются масло и ртуть.

Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.

Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).

Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией .

Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно

В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар .

Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.

Поскольку испарение - это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т.е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения (nеперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких;-)).

Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару мы бы попросту погибли.

Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).

Кипение

Кипение - это парообразование, происходящее по всему объёму жидкости.

Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.

Чем крупнее становятся пузырьки, тем большая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар - шум сменяется бульканьем, жидкость кипит.

Пузырьки, таким образом, служат «проводниками» пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму - испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.

В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения - именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению ). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.

При нормальном атмосферном давлении ( атм или Па) температура кипения воды равна . Поэтому давление насыщенного водяного пара при температуре равно Па. Этот факт необходимо знать для решения задач - часто он считается известным по умолчанию.

На вершине Эльбруса атмосферное давление равно атм, и вода там закипит при температуре . А под давлением атм вода начнёт кипеть только при .

Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной (температуры кипения, приводимые в таблицах учебников и справочников - это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от ). Так, спирт кипит при , эфир - при , ртуть - при . Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при . Значит, при обычных температурах кислород - это газ!

Мы знаем, что если чайник снять с огня, то кипение тут же прекратится - процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной . Куда же при этом девается подводимое тепло?

Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае - на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся неспособными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.

График кипения

Рассмотрим графическое представление процесса нагревания жидкости - так называемый график кипения (рис. 4 ).

Рис. 4. График кипения

Участок предшествует началу кипения. На участке жидкость кипит, её масса уменьшается. В точке жидкость выкипает полностью.

Чтобы пройти участок , т.е. чтобы жидкость, доведённую до температуры кипения, полностью превратить в пар, к ней нужно подвести некоторое количество теплоты . Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:

Коэффициент пропорциональности называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.

Так, при удельная теплота парообразования воды равна кДж/кг. Интересно сравнить её с удельной теплотой плавления льда ( кДж/кг) - удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же. А вот для превращения воды в пар нужно совершить куда большую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга.

График конденсации

Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 5 ).

Рис. 5. График конденсации

В точке имеем водяной пар при . На участке идёт конденсация; внутри этого участка - смесь пара и воды при . В точке пара больше нет, имеется лишь вода при . Участок - остывание этой воды.

Опыт показывает, что при конденсации пара массы (т. е. при прохождении участка ) выделяется ровно то же самое количество теплоты , которое было потрачено на превращение в пар жидкости массы при данной температуре.

Давайте ради интереса сравним следующие количества теплоты:

Которое выделяется при конденсации г водяного пара;
, которое выделяется при остывании получившейся стоградусной воды до температуры, скажем, .

Дж;
Дж.

Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется «всего лишь» (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты (пар конденсируется), образуется стоградусная вода, после чего добавится та же величина при остывании этой воды.

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры .

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры .

Количество теплоты

Это энергия , которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле


Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость - известная, уже вычисленная для всех веществ величина, в физических таблицах.

Теплоемкость вещества С - это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление - переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование - это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина,

Вопрос о том, что происходит с медом при нагревании, волнует многих. Эта тема сопровождается рядом мифов. Главным аргументом о вреде является образование ядовитого вещества оксиметилфурфурола. При этом упор делался на то, что ежедневное применение натурального нагретого продукта способно чуть ли не убить организм. Чтобы понять, что же действительно происходит с медовой массой, и можно ли нагревать мед, стоит более детально взглянуть на проблему.

Особенности структуры

Компоненты меда особо чувствительны не только к нагреванию, но и к условиям хранения. Продукт представляет собой частично переработанную пыльцу цветов, которая образуется в зобе медоносной пчелы. Все ферментативные процессы в нем длятся в течение двух лет, все это время масса обладает целебными свойствами. При этом целебные качества состава различаются в зависимости от количества ферментов и азотистых веществ.


Поэтому польза меда от разных пчел может отличаться. Более ценными сортами являются те, что были собраны пчелами из разных трав. Продукт используют в пищу для лечения заболеваний, в косметологии, для ухода за кожей и локонами. И вот тут-то и возникает спорный вопрос о нагревании, поскольку для многих рецептов мед нагревают, заявляя о пользе, в то время как та же наука доказывает, что нагревание делает полезный состав губительным для здоровья человека. На деле изменения есть, но не все так однозначно.

К примеру, для косметических масок мед приходится растапливать, поскольку не всегда есть возможность наносить свежий, пока еще не засахарившийся состав. Густая масса не сможет соединиться с другими компонентами рецептов, а крупные частицы могут поранить кожу. Растапливают продукт и в современной медицине, однако нужно знать предельный уровень температуры, чтобы не изменить структуру.


Иногда нельзя обойтись без нагревания (к примеру, нужно спасти мед, который начал бродить). Однако и метод нагревания может сказаться на целебных качествах состава. Поэтому в одних случаях при нагревании он остается полезным, а в других не только теряет целебные свойства, но и может стать токсичным.

Влияние температуры

Мало кто из покупателей задумывается о том, что перед фасовкой натуральный мед нагревают, применяя для розлива специальные машины. Не стоит рассматривать синтетический аналог, который не имеет вовсе никакой пользы. Что же касается натурального продукта, его обязательно фильтруют, что невозможно, когда он загустевший. Изменение температуры структуры приводит к запуску определенных процессов и скажется на консервирующем действии.

По этой причине нужно знать, что происходит при нагревании с разными показателями температуры. Считается, что питательные и целебные свойства с повышением температуры до +40 +45 градусов снижаются в незначительной мере и что чем меньше греть мед, тем выше будут его бактерицидные и иммуномодулирующие качества. Однако при нагревании ферментов и разрушении некоторых витаминов высвобождаются подвижные ионы металлов. А это активирует действие биологических катализаторов. При этом нормализуется деятельность клеток.

Поэтому нагрев до 40 градусов не столь страшен для медовой массы и ее пользы. «Живые» свойства сохраняются при температуре не более 15-25 градусов С (комнатной t). Однако это не означает, что нагретый состав нельзя употреблять в пищу или использовать в качестве масок для кожи и волос.

Сложно спорить и принимать одну из сторон, поскольку народная медицина доказывает эффективность горячего чая с медом, в то время как ученые считают, что горячий чай – не более чем согревающий напиток. Однако замечено, что употребление медового чая, действительно, способствует скорому выздоровлению. То же можно сказать и о теплых масках для кожи и волос: холодные составы не столь эффективны при регулярном применении.


Увеличение концентрации оксиметилфурфурола происходит в том случае, когда его нагревают до температуры +80 градусов. Это канцероген, который может накапливаться в организме и практически не выводится из него.

Но стоит заметить, что его количество даже при частом употреблении в разогретом виде в десятки раз меньше, чем при аналогичном употреблении газированных напитков, а также жареного кофе.

Мед не превращается в смертельный яд при нагреве, но с существенным повышением температуры он теряет энергетическую ценность. Поэтому более эффективным решением будет пить горячее молоко или чай отдельно, не смешивая с медом в 1 напиток. Отравиться им сразу невозможно, поскольку ни один человек не сможет съесть разогретый продукт в огромном количестве (порядка 6 кг в день). При температуре +50 градусов мед теряет свой аромат и полностью утрачивает бактерицидные свойства. И тут становится понятно, почему более эффективен и полезен товар, купленный у пчеловодов, нежели продукт, разлитый по магазинным упаковкам.


Как нужно греть?

Сегодня мед разогревают по-разному. Но не каждый способ позволяет сохранить полезные свойства в максимальной мере без вреда здоровью. Источником оксиметилфурфурола является фруктоза, находящаяся в составе. При неправильном нагревании образование токсина ускоряется.


Чтобы понять, что можно, а что нельзя, стоит узнать нюансы разных приемов придания меду пластичности. Водяная баня считается более щадящим и правильным методом растапливания густого продукта с сохранением его целебных качеств. Максимальный предел температуры составляет +35 +40 градусов. Берут широкую тару и наполняют ее чистой водой.

На дно опускают натуральную ткань либо полотенце, после чего опускают емкость с медом и ставят на плиту. Внимательно следят за тем, чтобы температура воды не превышала +40 градусов С, для чего пользуются кулинарным термометром. После плиту ставят на минимальную отметку и непрерывно помешивают массу, пока мед не растает. Это позволит растопить мед медленно и равномерно.

Другим вариантом нагрева является подогрев застывшей массы возле батареи. Правда, такой метод самый медленный по сравнению с другими, но он эффективен, не вреден и позволяет сохранить всю пользу меда. Поэтому при постепенном растапливании он не выделяет вредных веществ. Банку с засахарившимся продуктом ставят возле радиатора на расстоянии от 10 до 40 см.



Кроме двух перечисленных методов, для нагрева используют электрический духовой шкаф с регулятором температуры. В летнее время года можно ставить банку с медом на балкон, залитый солнцем. Однако нельзя допускать прямого попадания солнечных лучей.


Как хранить?

Важно учесть, что и хранение меда должно быть правильным. В противном случае он не только засахарится и загустеет, но может и забродить. Если хранить его правильно, он не утратит целебных качеств. Тара не должна быть стеклянной, поскольку при загустении мед будет сложно достать из банки, не разбив ее.

Для хранения подойдет эмалированная, керамическая либо деревянная емкость. Нужна крышка, чтобы не пропускать воздух и влагу. Чтобы мед не впитал посторонние запахи, банки нужно помыть с применением соды. Нежелательно постоянно и долго хранить мед в холоде при низкой температуре, поскольку она тоже влияет на консистенцию и полезные качества состава.


Фасовка в домашних условиях позволит сберечь полезные компоненты. Натуральный мед можно разлить по емкостям сразу после покупки, пока он свежий и жидкий.

Однако кислотность меда конкретного вида различна, поэтому биохимические процессы под действием имеющихся в составе ферментов будут происходить постоянно. При нагревании до +50 градусов в течение нескольких часов наряду с уменьшением числа ферментов увеличится количество 5-гидроксиметилфурфурола.

Как отличить?

При высокой температуре нагревания мед потемнеет. Перегретым считается продукт, прошедший термическую обработку при температуре более +60 градусов С. Нередко для продажи недобросовестный продавец может растопить мед, чтобы покупатель видел жидкую консистенцию и считал продукт свежевыкачанным. Определить свежесть можно внешне: независимо от разновидности, свежий продукт не имеет водянистой структуры. Он тягучий, имеет ярко выраженный цветочный запах и вкус.


Если при покупке продукт не имеет запаха и подозрительно темный на вид, – это разогретый мед. Кроме того, у старого меда карамельный привкус.

Сегодня каждый продукт подвергается тщательной проверке на вред или пользу для организма. Не исключением является и мед. Однако согласно исследованиям, нет научно доказанных данных, что нагрев провоцирует отравление организма. Существует немало рецептов народной медицины, где требуется именно нагретый мед.

При этом согласно многочисленным отзывам, оставленным на просторах Всемирной паутины, именно добавление меда в горячие напитки увеличивает лечебные свойства и способствует скорейшему выздоровлению. Отмечается, что чем он свежее, тем эффективнее. Применение в косметологии также указывает на необходимость нагревания меда не столько для растапливания и соединения с другими компонентами масок, сколько для лечебного эффекта. Везде отмечается, что медовые маски должны быть теплыми, иначе их эффективность будет снижена. При этом указывается, что регулярное нанесение теплых медовых составов на пряди и корни позволяет добиться роскошных волос, вернуть им природную красоту и жизненный блеск.



О том, опасен ли разогретый мед, смотрите в следующем видео.