Исполнение желаний

Водородная (термоядерная) бомба: испытания оружия массового поражения. Термоядерное оружие Термоядерное оружие принцип действия

В конце 30-х годов прошлого столетия в Европе уже были открыты закономерности деления и распада а водородная бомба из разряда фантастики перешла в реальную действительность. История освоения ядерной энергии интересна и до сих пор представляет собой захватывающее соревнование между научным потенциалом стран: нацистской Германии, СССР и США. Самая мощная бомба, владеть которой мечтало любое государство, была не только оружием, но и мощным политическим инструментом. Та страна, которая имела ее в своем арсенале, фактически становилась всемогущей и могла диктовать свои правила.

Водородная бомба имеет свою историю создания, в основу которой легли физические законы, а именно термоядерный процесс. Изначально ее неправильно назвали атомной, а виной тому была неграмотность. В ученый Бете, впоследствии ставший лауреатом Нобелевской премии, работал над искусственным источником энергии - делением урана. Это время было пиком научной деятельности многих физиков, а в их среде было такое мнение, что научные секреты не должны существовать вовсе, так как изначально законы науки интернациональны.

Теоретически водородная бомба была изобретена, теперь же с помощью конструкторов она должна была приобрести технические формы. Оставалось только упаковать ее в определенную оболочку и испытать на мощность. Есть два ученых, имена которых навсегда будут связаны с созданием этого мощного оружия: в США это - Эдвард Теллер, а в СССР - Андрей Сахаров.

В США термоядерной проблемой еще в 1942 году начал заниматься физик По распоряжению Гарри Трумэна, на то время президента США, над этой проблемой работали лучшие ученые страны, они создавали принципиально новое оружие уничтожения. Причем, заказ правительства был на бомбу мощностью не меньше миллиона тонн тротила. Водородная бомба Теллером была создана и показала человечеству в Хиросиме и Нагасаки свои безграничные, но уничтожающие способности.

На Хиросиму была сброшена бомба, которая весила 4,5 тонны с содержанием урана 100 кг. Этот взрыв соответствовал почти 12 500 тоннам тротила. Японский город Нагасаки стерла плутониевая бомба такой же массы, но эквивалентная уже 20 000 тонн тротила.

Будущий советский академик А. Сахаров в 1948 году, основываясь на своих исследованиях, представил конструкцию водородной бомбы под наименованием РДС-6. Его исследования пошли по двум ветвям: первая имела название «слойка» (РДС-6с), а ее особенностью был атомный заряд, который окружался слоями тяжелых и легких элементов. Вторая ветвь - «труба» или (РДС-6т), в ней плутониевая бомба находилась в жидком дейтерии. Впоследствии было сделано очень важное открытие, доказавшее, что направление «труба» является тупиковым.

Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка. При этом процесс сопровождается высвобождением высокой температуры, которая нужна для дальнейшего Нейтроны начинают бомбардировку вкладыша из дейтерида лития, а он в свою очередь под непосредственным действием нейтронов расщепляется на два элемента: тритий и гелий. Используемый атомный запал образует нужные для протекания синтеза составляющие в уже приведенной в действие бомбе. Вот такой непростой принцип действия водородной бомбы. После этого предварительного действия начинается непосредственно термоядерная реакция в смеси дейтерия с тритием. В это время в бомбе все больше увеличивается температура, а в синтезе участвует все большее количество водорода. Если следить за временем протекания этих реакций, то скорость их действия можно охарактеризовать, как мгновенную.

Впоследствии ученые стали применять не синтез ядер, а их деление. При делении одной тонны урана создается энергия, эквивалентная 18 Мт. Такая бомба обладает колоссальной мощностью. Самая мощная бомба, созданная человечеством, принадлежала СССР. Она даже попала в книгу рекордов Гиннесса. Ее взрывная волна приравнивалась к 57 (примерно) мегатоннам вещества тротил. Взорвана она была в 1961 году в районе архипелага Новая Земля.

В отличие от урановых и плутониевых бомб, материалы на основе лёгких элементов не имеют критической массы, что приводит к большим сложностям при создании ядерного оружия. Однако, при термоядерном синтезе дейтерия и трития выделяется в 4,2 раза больше энергии, чем при делении ядер такой же массы 2 35U. Поэтому, водородная бомба - гораздо более мощное оружие, чем атомная.

Термоядерное оружие - оружие массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия). При этом выделяется колоссальное количество энергии.

Кандидатами на роль применимых термоядерных реакций для водородной бомбы являются:

При температурах, достигаемых в атомных бомбах, реакция (1) проходит в юо раз быстрее, чем реакции (2) и (3) вместе взятые. Это объясняет, почему в первых термоядерных экспериментах участвовал тритий. Реакции (2) и (3), в свою очередь, в ю раз быстрее реакции (4). При этом скорость всех этих процессов (1-4) экспоненциально растёт с температурой. При повышении температуры скорость реакции (4) превышает скорость реакций (2)+(3) вместе взятых. Реакции (5) и (6) не являются термоядерными. Это обычные реакции деления, происходящие при захвате литием нейтрона в нужном энергетическом диапазоне. Зато в их ходе выделяется тритий, который также участвует в процессе. Реакция 6 Li + п требует нейтрона с энергией несколько МэВ, 7 Li + п - нейтрона не менее 4 МэВ. Используя лёгкую для поджога, но дорогую дейтериево-тритиевую смесь, возможно, инициировать реакцию даже при обычной плотности термоядерного горючего, используя лишь тепло от атомного взрыва (504-100 млн. градусов). Тритий - дорог в производстве (на порядок дороже оружейного плутония), да и к тому же распадается с Т= 12,32 лет. Это делает его мало пригодным к использованию. Остаётся 2 Н - дейтерий - вполне доступное горючее для реакций (2) и (з).

Чистый дейтерий был использован лишь однажды - во время испытания Ivy Mike (США). Его недостаток - его нужно очень сильно сжимать или сжижать при криогенной температуре, что непрактично. Проблема решается путём комбинирования дейтерия с литием в LiD. При этом за счёт деления лития производится большое количество трития для реакции (l). Для проведения реакции синтеза нужно: l) обеспечить высокую скорость протекания реакции (т.е. высокую температуру); 2) сохранить предыдущее условие на время, достаточное для протекания реакции; з) обеспечить большой энергетический выход, пропорциональный произведению (скорость реакции) (время её удержания).

Основная идея водородной бомбы (Теллера-Улама) основана на том факте, что при атомном взрыве 8о% энергии выделяется в виде мягких рентгеновских лучей, а не в виде осколков деления. Рентгеновские лучи намного опережают расширяющиеся (со скоростью ~юоо км/с) остатки плутония. Это позволяет использовать их для сжатия и поджога отдельной ёмкости с термоядерным горючим (второй ступени), путём обжатия излучением, до того, как расширяющийся первичный заряд разрушит её.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим. Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.


Рис. 6.

Компоненты бомбы помещаются в цилиндрический корпус- толкатель в виде цилиндра с пусковым атомным зарядом («триггером») на одном конце. Контейнер с термоядерным горючим - основной элемент бомбы. Его корпус изготовлен из 2 з 8 и - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Контейнер покрывается слоем нейтронного поглотителя (соединения бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - 6 LiD, и расположенный по оси контейнера плутониевый стержень из ^Ри, играющий роль запала термоядерной реакции. Триггер и контейнер заполняются пластмассой, проводящей излучение от триггера к контейнеру, и помещаются в стальной корпус бомбы. Триггер от цилиндра с горючим отделён защитной крышкой из урана или вольфрама.

После взрыва пускового заряда рентгеновские лучи, испускаемые из области реакции деления, распространяются по пластмассовому наполнителю. Основные составляющие пластмассы - атомы углерода и водорода, которые полностью ионизируются и становятся совершенно прозрачными для рентгеновского излучения. Урановый экран между триггером и капсулой с горючим, а так же сам корпус капсулы предотвращают преждевременный нагрев дейтерида лития. Тепловое равновесие устанавливается чрезвычайно быстро, так что температура и плотность энергии сохраняются постоянными на всём пути распространения излучения.

При взрыве триггера 8о% выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой оболочки происходит унос массы (абляция) вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. Явление уноса, подобно огненной струи ракетного двигателя направленного внутрь капсулы, развивает огромное давление на термоядерное горючее, вызывая прогрессирующее его обжатие (диаметр капсулы уменьшается в 30 раз, плотность материала возрастает в 1000 раз). Термоядерное топливо нагревается до температур, достаточных для начала реакции синтеза. Плутониевый стержень переходит в надкритическое состояние и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с 6 Li, в результате чего получается тритий, который взаимодействует с дейтерием. Абляция - унос массы с поверхности твёрдого тела потоком горячих газов, обтекающим эту поверхность. Абляция происходит в результате эрозии, расплавления, сублимации.

Быстрые нейтроны, в избытке имеющиеся при делении триггера, замедляются дейтеридом лития до тепловых скоростей и начинают цепную реакцию в стержне так скоро, как быстро он переходит в сверхкритическое состояние. Его взрыв, действующий наподобие «запальной свечи», увеличивает давления и температуры в центре капсулы, делая их достаточными для разжигания термоядерной реакции. Далее, самоподдерживающаяся реакция горения двигается к внешним областям капсулы с топливом.

Корпус капсулы мешает выходу теплового излучения за её пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции, доходят до з*ю 8 К. Для срабатывания этой схемы крайне важны условия симметрии заряда и точного соблюдения условий эффективной лучевой имплозии.

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов 2 ^ 8 U добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои 2 з 8 и (слойка).

Двухступенчатая схема Теллера-Улама позволяет создавать столь мощные заряды, насколько хватит мощности триггера для сверхбыстрого обжатия большого количества горючего. Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей. Вообще, на каждой стадии в таких устройствах возможно усиление мощности в -100 раз.

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок для баллистических и крылатых ракет.

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.

Чистое термоядерное оружие (также возможна формулировка «чисто термоядерное оружие ») - теоретический тип термоядерного оружия , в котором условия для реакции термоядерного синтеза создаются без использования уранового или плутониевого инициатора взрыва (триггера). Подобный тип оружия не создаёт долговременного радиоактивного заражения, ввиду отсутствия в нём распадающихся веществ. В настоящее время считается теоретически, безусловно, возможным, но пути практической реализации не ясны.

Концепция [ | ]

В современном термоядерном оружии, условия, необходимые для начала реакции ядерного синтеза , создаются путём детонации триггера - небольшого плутониевого ядерного заряда. Взрыв триггера создает высокую температуру и давление, необходимые для начала термоядерной реакции в дейтериде лития. При этом, основная часть долговременного радиоактивного заражения при термоядерном взрыве обеспечивается за счет радиоактивных веществ в триггере.

Однако, условия для начала термоядерной реакции возможно создать и без применения ядерного триггера. Такие условия создаются в лабораторных экспериментах и экспериментальных термоядерных реакторах. Теоретически, возможно создать термоядерное оружие, в котором реакция будет инициироваться без использования триггерного заряда - «чистое термоядерное» оружие.

Такое оружие будет иметь следующие преимущества:

Нейтронный вариант чистого термоядерного оружия [ | ]

Основным поражающим фактором в чисто термоядерном устройстве может стать мощный выброс нейтронного излучения [ ] , а не тепловая вспышка или ударная волна [ ] . Таким образом, сопутствующий ущерб от подрыва такого оружия может быть лимитирован. С другой стороны, это делает чисто термоядерное оружие не лучшим средством для тех ситуаций, когда необходимо поражение прочных сооружений, не содержащих биологической материи или электронных устройств (например, мостов).

Недостатки нейтронного варианта чистого термоядерного оружия те же, что и любого нейтронного оружия :

Возможные пути решения [ | ]

Различные пути решения проблемы чистого термоядерного оружия рассматривались непрерывно с 1992 года, но в настоящее время не дали позитивного результата. Главной проблемой является значительная сложность создания условий начала термоядерной реакции. В лабораторных экспериментах и термоядерных реакторах, такие условия создаются крупногабаритными установками, к тому же весьма энергоемкими. В настоящее время не представляется возможным создание пригодного для использования в боевых условиях термоядерного оружия, основанного, например, на лазерном поджиге реакции , - требуемые для этого лазеры имеют огромные размеры и потребляют значительное количество энергии.

Существуют несколько теоретически возможных путей решения проблемы:

Чистое термоядерное оружие на ударно-волновом излучателе [ | ]

Представляется теоретически возможным создание относительно компактного чисто термоядерного оружия на основе ударно-волнового излучателя . При этом, для запуска термоядерной реакции используется импульс электромагнитного излучения радиочастотного диапазона.

Согласно теоретическим расчетам, чистое термоядерное устройство на ударно-волновом излучателе будет иметь тротиловый эквивалент примерно сопоставимый с его собственной массой, или даже меньший. Таким образом, как взрывное устройство оно будет совершенно неэффективно. Однако, большая часть (до 80%) энергии при этом выделится в виде нейтронного потока, способного поражать неприятеля на расстоянии в сотни метров от эпицентра. Такое оружие, фактически, будет чистым нейтронным оружием - не оставляющим радиоактивного заражения и практически не создающим сопутствующего ущерба.

Термоя́дерное ору́жие (оно же Водородная бомба) - тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия (тяжёлого водорода)), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (При этом, используемый в водородной бомбе уран-238, распадается под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но значительно (в 5-10 раз) увеличивает количество радиоактивных осадков.

Схема Теллера-Улама.

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6Li - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Контейнер с термоядерным горючим - основной элемент бомбы. Он изготовлен из урана-238 - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Может быть выполнен из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формы второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до температур, близких к минимальным для начала реакции. Плутониевый стержень переходит в надкритическое состояние, и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.


A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…