Исполнение желаний

Грузовая управляемая парашютная система. Ростех создает первую управляемую планирующую парашютно-грузовую систему. Системы ветровой обстановки

Входящий в Ростех холдинг «Технодинамика» создает первую в России управляемую планирующую парашютно-грузовую систему УПГС-4000 для десантирования специализированных грузов из самолетов семейства Ил-76.

УПГС-4000 способна точно доставлять грузы полетной массой от 3 до 4 тонн, в том числе в самые труднодоступные районы. Разработка ведется в рамках опытно-конструкторской работы «Горизонталь-4000» специалистами Московского конструкторско-производственного комплекса «Универсал» (входит в холдинг «Технодинамика» Госкорпорации Ростех).

Система является универсальной – она способна десантировать с высокой точностью грузы различных видов – как военные, так и гражданские. Например, позволит доставлять в зоны стихийных бедствий гуманитарные грузы

Сергей Абрамов, индустриальный директор кластера вооружений Госкорпорации Ростех

«Серийные поставки системы в интересах Минобороны планируется начать в 2021 году. В настоящий момент комиссией заказчика утвержден технический проект УПГС-4000. Система является универсальной - она способна десантировать с высокой точностью грузы различных видов – как военные, так и гражданские. Например, позволит доставлять в зоны стихийных бедствий гуманитарные грузы весом в несколько тонн. Точность полета и посадки при этом обеспечивается с помощью автоматического управления и навигационного оборудования, которым оснащена система», - прокомментировал индустриальный директор кластера вооружений Госкорпорации Ростех Сергей Абрамов.

«Особенность выполненных работ по ОКР «Горизонталь-4000» заключается в том, что на этапе технического проекта были созданы макетные образцы составных частей УПГС-4000 – система автоматического управления, управляемая планирующая парашютная система, парашютная платформа, максимально приближенные к реальным. Информация, полученная в ходе проведения стендовых, примерочных, копровых, ветровых и летных испытаний этих макетов, позволила «Универсалу» уточнить схемно-конструктивные решения и выполнить корректирующие мероприятия для повышения функциональности изделия УПГС-4000, - отметил генеральный директор АО «Технодинамика» Игорь Насенков.

Одним из важных технических решений в «Горизонтали-4000» является наличие средств, обеспечивающих транспортирование и высокую мобильность снаряженной УПГС-4000. Благодаря им систему можно перевозить, в том числе по грунтовым дорогам, без вспомогательных транспортных платформ.
Погрузка «Горизонтали» в Ил-76 и ее десантирование происходит с использованием исключительно штатного десантно-транспортного оборудования самолета.

Комбинированная парашютная система обеспечивает управляемый планирующий полет УПГС-4000 с последующим снижением на посадочной парашютной системе.

Система автоматического управления, входящая в состав УПГС-4000, имеет защиту от средств радиоэлектронной борьбы вероятного противника. При этом средства связи этой системы позволяют удаленно вносить изменения в полетное задание для корректировки заданной точки приземления.

Парашютная платформа позволяет разместить широкую номенклатуру специальных грузов в диапазоне полетных масс и обеспечивает их мягкую посадку при приземлении.

Куянов А.Ю.

Управляемая планирующая грузовая система (УПГС) «Оникс»

УПГС "Onyx" (рис.1), предназначенна для десантирования грузов массой от 34 до 1000кг с высот до 10,7км, на ограниченные площадки, в ночное время и в условиях плохой видимости, в полностью автономном режиме .

Рисунок 1 – УПГС "Onyx"

Принцип действия УПГС "Onyx" изображен на рисунке 2, где цифрами обозначены следующие этапы:

1. Отделение от ЛА.

2. Введение в действие стабилизирующего парашюта.

3. Введение в действие основного планирующего парашюта.

4. Бортовой компьютер "Onyx" направляет УПГС в заданную точку приземления.

5. Введение посадочного парашюта на минимально безопасной высоте.

6. Кратковременное снижение на двух парашютах.

7. Снижение на посадочном парашюте.

8. Мягкое и точное приземление.

Рисунок2 – Принцип действия УПГС "Onyx"

Преимущества и тактико-технические данные УПГС "Onyx":

– обеспечивает десантирование груза от 34 до 1000кг ;

– высокие показатели точности десантирования - средняя точность 75 м ;

– температурный диапазон работы от -50 до + 85 C ;

– аэродинамическое качество - 4,5;

– модульная конструкция системы обеспечивает удобство эксплуатации;

– решение по применению двух парашютных систем позволяет сократить время десантирования в 10 раз по сравнению с однокупольною осесимметричной парашютной системой;

– применение стабилизирующего парашюта позволяет уменьшить динамические нагрузки в момент введения в действие планирующего парашюта;

– возможность многоразового использования планирующего и посадочного парашютов;

– малогабаритный компьютер соединен с GPS, который способен регистрировать полетные данные;

– надежные пневматические приводы управления;

– ввод посадочного парашюта осуществляется на минимально допустимой высоте;

– действующая в воздухе система предупреждения столкновений;

– базовый компьютер позволяет вносить коррективы в маршрут полета в режиме реального времени через линию связи;

– коррекция маршрута полета с учетом изменения силы и направления ветра (эти данные заносятся перед десантированием);

– программное обеспечение корректирует необходимую нагрузку крыла, в зависимости от массы десантируемого груза и устраняет ассиметрию крыла в полете.

Разработчики УПГС "Onyx" отмечают, что использование двух последовательно работающих парашютных систем, обеспечивает ряд преимуществ по сравнению с однокупольними. Использование посадочной парашютной системы для приземления позволило разработчикам сосредоточиться на повышении скоростных качеств купола. Кроме того, отпала необходимость в сложных алгоритмах управления для безопасного приземления груза на посадочной парашютной системе, что привело к упрощению программного обеспечения и снижению его стоимости. Высокие горизонтальная и вертикальная скорости уменьшили время нахождения УПГС в воздухе в 10 раз по сравнению с парашютными системами с осесимметричным куполом, таким образом уменьшается вероятность выявления УПГС в воздухе противником. В то же время летно-технические характеристики УПГС этой системы в 2-3 раза превышают летно-тактические характеристики десантных парашютных систем типа "крыло", что находятся на вооружении сил специальных операций, что не позволяет использовать ее в качестве "лидера" во время десантирования личного состава подразделов спецназначения .

И все же применение круглого посадочного парашюта снижает показатели надежности и безотказности работы, увеличивает массогабаритные показатели, усложняет роботу всей УПГС "Onyx".

Возможно, данное решение связано в первую очередь с невозможностью (сложностью) реализации разработчиками УПГС "Onyx" динамического торможения или аэродинамического подрыва.

На данный момент разработаны УПГС, в которых для достижения заданной скорости приземления ПС реализован принцип ДТ.

Литература

1 http://www.extremfly.com.

2 С.Прокофьев "Американская парашютная система "Оникс" - Зарубежное военное обозрение №5 2007.

Американская парашютная система «Оникс»

Капитан 2 ранга С. Прокофьев

Одной из особенностей ведения боевых действий в современных условиях, наглядно продемонстрированной в военных операциях в Афганистане и Ираке, стало широкое применение подразделений специального назначения (СпН) на всех этапах зарождения и развития конфликтов. Одним из основных способов вывода подразделений СпН в район выполнения боевой задачи было и остается десантирование на парашютах. В дальнейшем организуется доставка им необходимых грузов по воздуху с помощью парашютных грузовых систем (ПГС).
Этой статьей начинается цикл публикаций, освещающих разработку парашютных систем и средств десантирования для сил специальных операций стран НАТО.
Входе ведения боевых действий в Афганистане и Ираке в период с октября 2001 года по июль 2004-го командование сухопутных войск США 27 раз применяло различные десанты как днем, так и ночью. Из них семь парашютных, в том числе один с десантированием с большой высоты и длительной задержкой раскрытия парашюта, остальные - из вертолетов посадочным способом. Их основу составляли подразделения и части воздушно-десантных войск и сил специальных операций. Кроме того, десанты, в том числе и парашютные, применялись командованиями морской пехоты и специальных операций ВМС США.

Например, в июне 2004 года в Ираке был высажен ночной парашютный десант из состава МП США с целью организации засады на путях вероятного продвижения колонны с оружием и боеприпасами для сил сопротивления. Сначала с высоты свыше 3 000 м и на удалении несколько километров от площадки приземления с самолета КС-130 была выброшена разведгруппа. Выброска производилась с помощью управляемых планирующих парашютных систем (УППС) с немедленным раскрытием парашютов. После приземления разведчики осмотрели площадку приземления, выставили посты наблюдения по периметру и установили радиотехнические маяки для обеспечения прицельного сбрасывания парашютистов. Выброска основной части десанта (около 60 человек), выполнялась с высоты около 300 м двумя вертолетами СН-46Е.
Текущими планами руководства ВС США предусматривается увеличение численности сил специальных операций (ССО). В составе групп специального назначения (воздушно-десантных) сухопутных войск планируется сформировать по одному дополнительному батальону, а в группах СпН ВМС - по одному дополнительному отряду СпН- водолазов-разведчиков. К началу октября 2006 года завершилось формирование командования специальных операций морской пехоты США в составе двух батальонов СпН и подразделений обеспечения общей численностью 2 500 человек. Все военнослужащие этих подразделений должны совершать прыжки с парашютом. Аналогичные организационно-штатные мероприятия, хотя и в меньших масштабах, проводятся союзниками США по НАТО, прежде всего Великобританией, Францией, Германией, Нидерландами, Норвегией.
Зарубежные специалисты отмечают, что за последние десятилетия изменились взгляды на способы десантирования парашютистов-спецназовцев. В частности, возросло число военнослужащих ССО, для которых основным воздушным способом вывода в район выполнения задачи стали способы десантирования НАНО (High Altitude High Opening - «десантирование с большой высоты с немедленным раскрытием парашюта») и HALO (High Altitude Low Opening - «десантирование с большой высоты с длительной задержкой раскрытия парашюта») * .
Например, в конце 1990-х годов в составе каждого батальона СпН сухопутных войск США был только один штатный оперативный отряд «Альфа» (12 человек), а в отряде СпН ВМС - один взвод (16 человек), личный состав которых проходил специальную подготовку, имел на снабжении УППС и был подготовлен к выполнению боевых задач с помощью вышеуказанных способов десантирования.
В настоящее время три штатных отряда «Альфа» (по одному в роте) в батальоне СпН и два взвода в отряде СпН ВМС готовы к десантированию этими способами. Во вновь сформированные батальоны СпН морской пехоты вошли бывшие роты глубинной разведки дивизии МП (около 100 человек в каждой), личный состав которых полностью подготовлен к высотным прыжкам с парашютом.
По мнению иностранных специалистов, применение этих способов десантирования повышает скрытность действий подразделений СпН, так как не позволяет противнику с достоверной точностью определить площадки приземления и даже обнаружить сам факт десантирования. Кроме того, учитывая современное развитие средств противовоздушной обороны, такой способ уменьшает вероятность потерь самолетов военно-транспортной авиации от огня наземных средств ПВО, поскольку позволяет осуществлять десантирование с большой высоты без захода самолетов в зону действия наземных средств ПВО противника.
Командование ССО ВМС США планирует, чтобы каждый водолаз-разведчик, а также член экипажа катеров типа RIB-11, которые могут десантироваться на воду, проходил подготовку по десантированию с помощью УППС. Для последних это означает, что они могут приводняться в непосредственной близости от катера и быстро добраться к нему после этого. С этой целью в учебном центре КССО ВМС на ВМБ Коронадо организованы постоянно действующие курсы высотных прыжков с парашютом, так как мест, ежегодно выделяемых для ССО ВМС в межвидовом центре обучения высотным прыжкам Юма, недостаточно для подготовки требуемого числа военнослужащих данных формирований. Интересен тот факт, что подготовку в этом центре проводят специалисты фирмы GPS World, с которой командование ССО ВМС заключило соответствующий контракт, утвердив программу и методику подготовки. К тому же эта компания по другому контракту с тем же командованием производит и поставляет ему УППС различных типов.
Другой тенденцией, обозначившейся в последние десятилетия, стало повышение полетной массы военнослужащих подразделений СпН при десантировании парашютным способом, которая определяется суммарной массой самого парашютиста, его вооружения и снаряжения, десантируемого с ним, а также собственной массой УППС. Например, еще в ходе операции «Буря в пустыне» масса вооружения и снаряжения военнослужащих ССО в отдельных случаях достигала 90 кг.
В настоящее время исходя из накопленного опыта и стоящих новых задач, прежде всего в США и некоторых странах Западной Европы, активно ведутся разработки парашютных систем и средств десантирования (ПС и СД), а также работы по повышению точности сброса людей и грузов в интересах сил специальных операций. Например, одним из руководящих документов НАТО (DAT-5-Ref.: AC/259-D(2004)0023 Final) определены 10 наиболее важных направлений развития вооружения и военной техники для борьбы с международным терроризмом. Одним из которых (пункт 5) является: «Разработка высокоточных ПС и СД для ССО». Увеличивается также финансирование НИОКР по этим направлениям. Так, МО США в 2005 году на эти цели выделило 25 млн долларов, что почти в 7 раз больше, чем в 1996-м.
При этом, по мнению иностранных специалистов, разработка управляемых планирующих парашютных грузовых систем (УППГС) является наиболее перспективным направлением развития СД. С их помощью может осуществляться точная и скрытная доставка грузов подразделениям СпН, действующим в районах, занятых противником. Эти системы можно использовать также для оказания навигационной помощи группам СпН (УППГС исполняет роль «лидера» или «ведущего» для десантируемых вслед за ней на УППС разведгрупп либо с ее помощью выставляются светотехнические маяки для обозначения площадок приземления или приема грузов в темное время суток). Кроме того, они могут использоваться при проведении психологических операций (разбрасывание пропагандистских листовок и других агитационных материалов в строго определенных районах). Такие средства могут быть востребованы не только в военной области, но и в гражданском секторе, например при оказании помощи пострадавшим в результате стихийных бедствий или техногенных катастроф, работающим в труднодоступных горных или северных районах, когда иного способа быстро и точно доставить им необходимые грузы не существует или доставка их иным, кроме воздушного, способом займет длительное время.
УППГС комбинированного типа «Оникс» разработана фирмой «Атаир аэро-спейс» (г. Нью-Йорк) в рамках программы финансирования НИОКР небольших предприятии НИЦ Натик и командованием специальных операций ВС США. По состоянию на октябрь 2005 года было проведено свыше 200 летных испытаний УППГС.
Система «Оникс» предназначена для десантирования грузов полетной массой до
1 000 кг с высот до 10 700 м над уровнем моря из самолетов и вертолетов с установленным рольганговым оборудованием методом самосброса (когда воздушное судно имеет положительный угол атаки и груз отделяется под действием силы тяжести) при индикаторной скорости воздушного судна до 278 км/ч на дальности до 44 км от назначенной точки приземления способом НАНО или HALO с помощью парашютного автомата. Средняя квадратическая ошибка приземления от назначенной точки не превышает 50 м.
Отличительной особенностью УППГС «Оникс» является использование двух последовательно работающих на разных этапах снижения груза парашютных систем: управляемой планирующей парашютной системы с высокоскоростным куполом эллиптической формы в плане и неуправляемой посадочной парашютной системы с грузовым куполом круглой формы, предназначенной для безопасного приземления парашютируемого объекта.
Фирмой разработаны три типа УППГС: «Оникс 500» (полетная масса 34-227 кг), «Оникс 2200» (227-1 000 кг) и «Микро Оникс» для десантирования малогабаритных грузов массой до 9 кг.
Купол УППГС «Оникс 500» двух-оболочковый. Тормозная площадь купола 11,15 м2, размах 3,65 м. Масса парашютной системы в сложенном виде и блока управления парашютом (БУП) 16,34 кг. Площадь двухоболочкового купола УППГС «Оникс 2200» 32,5 м2, размах 11,58 м. Площадь купола посадочной системы 204,3 м2 (оснащена устройством рифления типа «Сомбреро», производства фирмы «Батлер»). Масса парашютной системы с БУП 45 кг. Аэродинамическое качество обеих УППГС составляет 4,5.
Парашютная система вводится в действие от троса принудительного раскрытия парашюта воздушного судна. Раскрытие планирующей системы происходит по каскадной схеме: сначала раскрывается стабилизирующий парашют, который обеспечивает снижение груза до заданной высоты или в течение установленного времени, а затем, после срабатывания парашютного автомата, вводится в действие основной купол системы. Парашютный автомат системы «Оникс» выполнен на базе стандартного электронно-пиротехнического страхующего парашютного прибора. После наполнения купола основного парашюта стабилизирующий парашют располагается сверху и сзади купола основного парашюта и при снижении не препятствует его управлению.

Устройство рифления, предназначенное для снижения динамических нагрузок при раскрытии основного купола планирующей системы, обеспечивает постепенное наполнение секций купола: сначала центральных, затем боковых. БУП обеспечивает автоматический вывод УППГС «Оникс» в точку раскрытия посадочной системы по заданной траектории снижения (возможно использование нескольких пунктов поворота маршрута, снижение по крутой спирали). УППГС после сброса разворачивается на цель и, планируя, осуществляет подход к ней, постепенно снижаясь в точку начала спуска, которая располагается над заданной точкой приземления на высоте 1 370 м над рельефом местности. Затем УППГС начинает спуск по крутой спирали, описывая спираль диаметром 80 м, которая сужается по мере приближения к земле. Средняя горизонтальная скорость планирования 41 м/с, вертикальная скорость при снижении по спирали 62 м/с. На высоте 125-175 м над рельефом местности над заданной точкой приземления происходит раскрытие посадочной системы с помощью вытяжного парашюта, и груз приземляется на куполе круглой формы. Точка ввода в действие посадочной системы рассчитывается бортовой цифровой вычислительной машиной БУП в реальном масштабе времени с учетом ветрового сноса. БУП, парашютный автомат, а также купола планирующей парашютной системы (ППС) остаются на этапе приземления на соединительном звене и могут быть использованы для повторного применения.
Купол ППС системы «Оникс» изготовлен из композиционного материала с нулевой воздухопроницаемостью, разработанного фирмой «Атаир аэроспейс». Он представляет собой трехслойный материал. При изготовлении слой высокомодульной армированной ткани обкладывается тонкой полимерной пленкой, пропитывается и обрабатывается методом горячего давления. Так как композиционная ткань изготовляется не традиционным ткацким способом, она не подвержена короблению, гофрированию, утоку и может находиться в процессе изготовления под любым углом и изначально принимать необходимые геометрические формы. Полотна из композиционного материала могут сшиваться, соединяться ультразвуковой сваркой или химическим путем с помощью клея.
Новый материал тоньше, в 3 раза прочнее, в 6 раз меньше растягивается и на 68 проц. легче традиционных нейлоновых материалов с двойным каркасированием и нулевой воздухопроницаемостью, используемых для изготовления куполов современных управляемых ППС. Лобовое сопротивление купола парашюта, изготовленного из композиционного материала фирмы «Атаир аэроспейс», значительно меньше. Применение такого материала позволило разработчикам систем «Оникс» уменьшить площадь купола ППС и, следовательно, значительно увеличить его загрузку. При этом на 65 проц. повысилось аэродинамическое качество. На куполе парашюта из композиционного материала не нашивается усиливающий каркас из высокопрочной ленты, как на обычных куполах. Он имеет меньший объем по сравнению с куполом такой же площади, изготовленным из традиционных материалов, например F-111 или ZP. Повысились и эксплуатационные свойства купола. Он не впитывает влагу, не подвержен воздействию ультрафиолетового и солнечного излучения, не слеживается и может храниться в сложенном виде свыше пяти лет в готовности к применению.
В 2005 году фирма инвестировала 2,5 млн долларов собственных средств для строительства предприятия по производству нового парашютного композиционного материала. Однако главным недостатком, препятствующим широкому применению этого материала для изготовления различных парашютных систем в настоящее время, является его стоимость: он в 5 раз дороже стандартных материалов.
Блок управления полетом УППГС «Оникс» включает: БЦВМ с 32-разрядным процессором; бесплатформенную инерциальную навигационную систему (БИНС), корректируемую по сигналам космической радионавигационной системы (КРНС) NAVSTAR, и пневматический силовой привод для управляющих строп ППС. БЦВМ обрабатывает следующие данные: горизонтальную дальность до точки приземления; высоту по барометру; курс ПГС; высоту, рассчитанную с помощью КРНС; скорость ветра; скорость снижения; путевую скорость; линию пути; недолет/перелет до цели; наклонную дальность до точки приземления; ожидаемое время приземления. БИНС включает: трехкоординатный гироскоп, акселерометр, магнитометр и барометрический высотомер. 16-канальный приемник КРНС обновляет данные с частотой 4 Гц и определят координаты подвижного объекта с точностью 2 м. Размеры БИНС 3,81 х 5,08 х 1,9 см, масса 42,5 г. Процессор размещается в корпусе из углепластика размером 10,6 х 12,7 х 5 см вместе с БИНС. Блок управления сохраняет работоспособность в диапазоне температур от -50 до +85°С и высот до 17 670 м. Питание осуществляется от литий-ионной аккумуляторной батареи напряжением 12 В, время непрерывной работы которой составляет 6 ч.
Полетное задание для УППГС разрабатывается с помощью системы планирования полетного задания (СППЗ), созданной специалистами фирмы и совместимой с единой СППЗ. Она позволяет осуществлять беспроводной ввод полетного задания в БУП УППГС любого типа до загрузки в воздушное судно или вводить его с помощью БРЭО в воздухе. Полетное задание может быть записано на съемный носитель данных. С помощью СППЗ можно проводить послеполетный анализ работы всех частей и механизмов УППГС.
Блок управления позволяет применять УППГС «Оникс» без использования СППЗ при сбросе грузов со средних высот и небольшой дальности до точки приземления. Заранее задаются только масса груза и координаты точки приземления. После сбрасывания УППГС с воздушного судна БУП в полете обрабатывает данные, получаемые в реальном масштабе времени, и выводит данную систему в назначенную точку приземления. В частности, в июне 2004 года на полигоне НИЦ Натик для представителей СВ США были проведены показательные сбросы УППГС без использования СППЗ. Всего было осуществлено 10 сбросов с высоты 3 000 м над рельефом местности и дальности 1,8-5,5 км от назначенной точки приземления. Точка начала выброски выбиралась произвольно. Средняя квадратическая ошибка при приземлении составила 57 м (максимальное отклонение от заданной точки приземления 84 м, минимальное 7 м).
В декабре 2004 года на полигоне Илой (штат Аризона) были проведены летные испытания адаптивной системы межпарашютной навигации (СМпН) при серийной выброске УППГС «Оникс» с целью отработки информационных и управляющих алгоритмов СМпН для управления полетом группы УППГС в режимах совместного разворота в горизонтальной и вертикальной плоскости и системы предупреждения схождения УППГС в воздухе. Пять УППГС после выброски осуществляли полет к назначенной точке приземления в составе сомкнутой группы или строем (пеленгом, потоком одиночных ПГС). Для определения относительного положения, скоростей и ускорений УППГС в воздухе в групповом полете на каждой из них устанавливалась аппаратура радиолинии приема и передачи данных (РлПД). Информация передавалась по линии «борт -борт». Тем самым обеспечивался групповой полет УППГС до точки начала роспуска группы и маневрирование (размыкание) для установления безопасного интервала перед раскрытием посадочных ПС. В ходе этих испытаний отрабатывались три способа управления полетом группы УППГС.
Первый способ заключается в использовании одной из систем в качестве ведущей («лидера»). При этом она следовала по номинальной траектории, а в БЦВМ ведомых систем формировалась информация с учетом переданных по РлПД данных об относительных ускорениях, траекторном угле и угловых скоростях ведущей системы, и все остальные следовали за «лидером». Однако такой способ, по мнению специалистов фирмы «Атаир аэроспейс», имеет большой недостаток: в случае выхода ведущей УППГС из строя или кратковременного сбоя в работе ее БУП может произойти потеря управления всеми системами.
Второй способ предполагает использование «виртуального лидера», когда в БУП всех УППГС вводилась одинаковая программа и они осуществляли полет, постоянно контролируя свое положение относительно друг друга, соблюдая заданный интервал и дистанцию. В ходе обмена информацией между УППГС их системы управления вырабатывали траекторию полета, наиболее точно соответствующую заданной, и следовали ей. При таком способе назначенный «лидер» как бы отсутствует. Преимуществом данного способа, по мнению американских специалистов, является независимость работы БУП каждой УППГС. Уход одной или нескольких из них с запрограммированной траектории не влияет на полет оставшихся в группе систем. В то же время такой способ работы СМпН требует хорошо отлаженной и надежной РлПД, высокоскоростного процессора и сложного программного обеспечения.
Третий способ, децентрализованный, состоит в следующем. Одинаковая программа полета вводится в БУП каждой УППГС, однако обмен информацией осуществляется только с двумя-тремя ближайшими системами в группе, одна из которых, в свою очередь, обменивается ею с УППГС другой мини-группы. Такой способ управления позволяет СМпН успешно выполнять маневрирование группой УППГС: смыкание, размыкание, перестроение для облета препятствий* расхождение на разные площадки приземления или роспуск группы перед приземлением на одну из них и, по мнению зарубежных экспертов, является наиболее перспективным.
По заявлениям специалистов фирмы «Атаир аэроспейс», разработанная ими СМпН позволяет осуществлять полет и безопасное приземление группы из 5-50 систем «Оникс» на дальность свыше 55 км на одну или несколько разнесенных площадок приземления.
В 2005 году командование специальных операций СВ США закупило пять УППГС «Оникс 500» для опытной эксплуатации, а в сентябре 2006-го был заключен контракт стоимостью 3,2 млн долларов на приобретение 32 систем различного типа.
Отмечается, что применение на «Оникс» двух последовательно работающих ПС, обеспечивает ряд преимуществ по сравнению с однокупольными. Использование ППС для приземления позволило разработчикам сосредоточиться на повышении скоростных качеств ее купола. Кроме того, отпала необходимость в сложных алгоритмах управления для безопасного приземления груза на ППС, что привело к упрощению программного обеспечения и снижению его стоимости. Высокие горизонтальная и вертикальная скорости уменьшили время нахождения УППГС в воздухе в 10 раз по сравнению с парашютными системами с куполом круглой формы или УППГС, купол которых изготовлен из традиционных материалов, при сбросе с одинаковой высоты и, следовательно, вероятность их обнаружения в воздухе противником. В то же время летно-технические характеристики ППС этой системы, в 2-3 раза превосходящие летно-тактические характеристики десантных ППС, находящихся на вооружении ССО, не позволяют использовать ее для десантирования личного состава подразделений СпН в качестве «лидера».

Возможность забрасывать силы специальных операций на ограниченные площадки является бесценной, особенно когда такие зоны находятся на больших высотах или когда в операции принимают участие боевые собаки.

Государственные структуры полагаются больше на эффект наращивания сил и средств сил специальных операций (ССО) и их способность скрытно внедряться и уходить из районов операций. Некоторые из современных технических средств, используемые ССО разных стран в воздушном пространстве, базируются на новых перспективных системах, способных точно доставить группы операторов в недоступные районы, включая высокогорную местность с крутыми склонами.

Эти специфические средства позволяют как малым, так и большим группам в виде парашютного десанта скрытно прибывать в целевые районы для выполнения различных боевых задач, варьирующихся от наблюдения и разведки и до прямого боевого столкновения, а также оказания военной помощи. Сегодня круг задач, значительно расширившись, включает в себя сценарии гуманитарной помощи и операции по ликвидации последствий стихийных бедствий.

Для того чтобы соответствовать задачам времени, необходимо смело использовать парашюты новых моделей из современных материалов для заброса людей и грузов, а также дополнительные средства и оборудование для высотных операций, например, снабжения кислородом и заброски специального снаряжения, включая собак.

Вскоре после демонстрации своей планирующий парашютной системы с самонаполняющейся оболочкой RA-1 , поставляемой в нераскрываемых количествах Командованию сил специальных операций США (USSOCOM), компания Airborne Systems North America объявила о том, что добавила еще одного члена к своему семейству парапланов.

Эта новейшая система, получившая обозначение Hi-5 . была разработана в ответ на современные оперативные потребности в увеличенной дальности и грузоподъемности при затяжных и незатяжных прыжках с парашютом с больших высот.

Представитель компании пояснил, что система Hi-5 предоставляет «военным уникальные возможности и способна обеспечивать не только превосходное затяжное планирование, но и позволяет изменять угол планирования для быстрого снижения и точного приземления».

Американский спецназ проходит обучение затяжным прыжкам в дневное время, практикуясь скрытному десантированию в целевые районы

Сила планирования

Прежние парашютные системы зачастую представляли собой специализированные решения, с помощью которых можно было выполнять либо скрытное дальнее десантирование с больших высот, либо десантирование на воду, либо открытые прыжки с малых высот, более подходящие для обычных формирований или крупного парашютного десанта специальных сил.

По данным компании Airborne Systems North America, парашютная система Hi-5 имеет аэродинамическое качество 5.5:1 (в сравнении с существующими парапланами, у которых аэродинамическое качество варьируется от 3:1 до 4:1) с дополнительной возможностью быстрого перехода к аэродинамическому качеству (относительной дальности планирования) 1:1, контролируемому системой изменения планирования Glide Modulation System. (Аэродинамическое качество — отношение подъемной силы к лобовому сопротивлению)

«В отличие от других методов контроля угла снижения, например, с помощью триммеров, Glide Modulation System не увеличивает общую скорость парашюта, обеспечивая безопасный переход на любой высоте. Это исключает необходимость во множестве спиралей или маневров типа «змейка» на малой высоте и позволяет очень точное приземляться за счет безопасного захода на посадку с прямой », — заявил представитель компании.

«Парашютист полностью контролируют свое положение и момент приземления на целевую площадку. Помимо качественного рывка в технологии относительной дальности планирования система Hi-5 имеет еще ряд положительных качеств. Для парашютиста она легка в обслуживании и проста в обращении, для укладчика парашютов процесс ее укладки интуитивно понятен. Она ликвидирует разрыв между нашими парашютами Intruder RA-1 и Hi-Glide, предоставляя крыло с высоким аэродинамическим качеством, обеспечивая точность приземления и возможность безопасно спускаться в труднодоступные зоны».

Парашютная система Hi-5 разработки компании Airborne Systems North America

Ее конструкция базируется на дополнительных клевантах, встроенных в передние стропы парашюта, что позволяет парашютисту более плавно изменять аэродинамическое качество купола от 5.5:1 до 1:1 (например, если 5.5:1, то на каждые 100 метров потери высоты максимальная дальность планирования при нулевом ветре составляет 550 метров). По данным компании, парашютная система имеет запасной купол и обеспечивает почти бесшумную работу при проведении тайных операций.

Система Hi-5 включает купол параплана эллиптической формы из 11 сегментов, который может развертываться на максимальной высоте 7600 метров над уровнем моря. Впрочем, парашют должен раскрываться не ниже высоты 1050 метров над уровнем моря. Парашют, может раскрываться различными способами, варьирующимися от вытяжной стропы или выбрасываемого при помощи пружины вытяжного парашюта и до систем с ручным раскрытием.

Впрочем, с момента появления системы Hi-5 в октябре 2016 года компания Airborne Systems North America разработала парашют Hi-5 с куполом большего размера, его площадь была увеличена с 34 м 2 до 39 м 2 с целью повышения грузоподъемности с 220 до 250 кг.

«Это позволяет нам вписаться в диапазон по массе для прыжков с тандемом, чего мы никогда не рассматривали в прошлом», — пояснил главный технолог компании.

«Купол площадью 39 м 2 предлагает возможность планировать, как вы хотите, или приземлиться так точно, как вы хотите, при этом вы можете нести второго человека или дополнительное снаряжение. Оперативные требования, предъявляемые к современному военнослужащему, расширяются, нашим солдатам необходимо нести больше снаряжения, преодолевать большие дистанции и приземляться в ограниченном пространстве точно и безопасно. Hi-5 соответствует всем этим требованиям и купол площадью 39 м 2 является единственным путем в будущее».

В конце 2016 года американская армия объявила о намерении закупить продвинутую парашютную систему RA-1 Advanced Ram Air Parachute System (фото внизу), с которой могут совершать прыжки с высоты 10000 метров парашютисты, квалифицированные как для затяжных, так и незатяжных прыжков (с вытяжной стропой). Она должна заменить существующие парашютные системы МС-4 Ram Air Personnel Parachute.


Покорение высот

На рынке специальных операций заметную роль играет компания Complete Parachute Solutions (CPS), занимающаяся развитием технологии прыжков с больших высот. По словам представителя компании CPS Джона Баста, его фирма расширяет свои возможности, в том числе в рамках спонсорских экспедиций на гору Эверест в 2013, 2014, 2015 и 2016 годы, целью которых является проведение испытаний на больших высотах, направленных на отработку новых требований современного оперативного пространства.

Баст пояснил, что команда CPS Everest недавно вернулась из Гималаев «с новыми рекордами приземления с больших высот» и аттестацией новой универсальной кислородной системы Multi-Purpose Tactical Oxygen System. Проведя серию прыжков с вертолетов, команда CPS заявила, что вернулась из этой командировки с еще 4 мировыми рекордами в затяжных прыжках, связанные с удобством использования, большой высотой, точностью и грузоподъемностью.

Начальные прыжки выполнялись с вертолетов, взлетавших с взлетного поля Сянбош в Непале. Парашютисты из состава USSOCOM, а конкретно представители спецназа ВМС и спецназа Корпуса морской пехоты США, совершали прыжки с высот порядка 3800 метров над уровнем моря, борясь во время спуска с сильными ветрами, низкими температурами и кислородной недостаточностью, когда гипоксия становится серьезной проблемой. В борьбе с гипоксией специалисты CPS полагалась на универсальную кислородно-дыхательную систему нового поколения MTOS (Multi-Purpose Tactical Oxygen System) британской компании Top Out Aero, которая позволяет операторам свободно дышать на «экстремальных высотах».

Впрочем, MTOS применялась не только во время прыжков с парашютом, эта система также использовалась при выполнении разведывательных задач в высокогорных местности, подготовке посадочных площадок и в других высотных задачах на очень сложной местности.

Мировые рекорды, побитые CPS, включали первое приземление на высоте 3800 метров парашютиста с менее чем 50 прыжками, который прошел подготовку к выполнению особых задач на больших высотах. По словам Баста, инструктор и бывший снайпер морской пехоты Кейли Войчик стал первым «парашютистом с наименьшим количеством прыжков, успешно приземлившимся при сильном ветре и разреженном воздухе, что характерно для высоты 3800 метров. Это серьезная проверка агрессивного управления куполом при выполнении специальных задач и программ подготовки к приземлению, предоставляемых компанией CPS».

Что касается рекордов высоты, то инструкторы CPS выполнили программу прыжков и приземлений на высоте 4500 метров с Ама Далам. Там же резервист морской пехоты капитан Кэролл успешно выполнил высотный прыжок с рюкзаком весом 32 кг. Затем группа переместилась на Горак Шеп, где выполнила приземления на высоте почти 5200 метров, и на гору Кала Паттар, где были проведены прыжки с приземлением на высоте более 5300 метров.

Наконец, также были побиты новые рекорды по прыжкам тандемом и приземлению на высоте 5100 метров, для чего использовались парашюты ТР460 и Special Operation Vector 3 Tandem Sigma. Подобная концепция может быть использована для заброски не обученного затяжным прыжкам личного состава в район операции, где он сможет продолжить выполнение своей специальной задачи.

Выброска парашютно-десантных групп зачастую сопровождается высокоточной выброской грузовых платформ, доставляющих на землю тактические автомобили, быстроходные катера и другое специальное оборудование

Доставка спецгрузов

Помимо заброски личного состава на парашютах, грузов и других специальных средств, включая боевых собак, парашюты остаются важнейшим элементом ССО в современной оперативной обстановке.

ССО стран членов НАТО, включая Великобританию и Францию, недавно закончили проведение оценки систем воздушной доставки, предназначенных для выброски быстроходных катеров на поверхность моря. К ним относится система воздушной доставки морских катеров MCADS (Maritime Craft Aerial Delivery System) от Airborne Systems, которая способна нести лодки длиной до 12 метров, включая катера Offshore Raiding Craft длиной 9,5 метров британской компании Holyhead Marine.

Доставка лодок

Британское министерство собирается закупить в 2017-2018 годах в общей сложности 14 платформ доставки катеров и лодок беспосадочным способом типа MCADS. Платформы PRIBAD 21 (Platform Rigid Inflatable Boat Aerial Delivery) могут сбрасываться с задней аппарели военно-транспортных самолетов С-130 Hercules, А400М, С-17 и С-5. Французские специальные силы также провели испытания этой системы на предмет доставки своих жестко-надувных лодок Ecume производства компании Zodiac Milpro.

Подобная возможность остается популярной в ССО многих стран, чьи подразделения способны доставлять маломерные суда на большие расстояния с целью внедрения и эвакуации специальных групп.

После сброса из грузового отсека самолета платформы PRIBAD сначала выпускается вытяжной парашют для вытягивания основного купола. Вслед за грузом на своих индивидуальных парашютах, например RA-1, совершает прыжки специальная группа. В боевых условиях с целью обеспечения скрытности операции после приводнения поддон системы PRIBAD может быть затоплен, хотя во время боевой подготовки поддоны за счет специальных поплавков обычно остаются на поверхности для повторного использования.

Кроме того, британское министерство обороны рассматривает подобную технологию для безопасного заброса на сушу тактических автомобилей и другого имущества. В 2016 году боевые подразделения провели оценку парашюта Medium Stress Parachute (MSP) производства компании Airborne Systems, способного посадить груз массой до 3175 кг, что позволяет забрасывать различные транспортные средства, включая специальные автомобили MRZR-2 и MRZR-4 компании Polaris Defense.

Как и в случае с платформой PRIBAD 21, вытяжной парашют системы MSP заставляет раскрыться основной купол поддона с пневматической амортизацией, который способен безопасно доставлять на землю тактические автомобили. Система MSP предназначена для десантирования с военно-транспортных самолетов C-130J и А400М.

Впрочем, министерство обороны уже стремится заменить обновленную технологию MSP системой воздушной доставки ATАХ от Airborne Systems, которая способна доставить груз максимальной массой 7260 кг. Система ATАХ предназначена для доставки наземных и морских платформ, хотя источники в оборонной сфере не смог подтвердить, когда произойдет переход на новые системы.

Как пояснил Баст, компания CPS разработала еще один вариант системы доставки Complete Parachute Autonomous Delivery System, которая предназначена для доставки сверхлегких грузов массой от 115 до 270 кг.

Управляемый груз

«Эта система управляемой доставки грузов также обеспечивает высокий уровень точности приземления в заданную точку и, как правило, используется группами, выполняющими затяжные прыжки, в качестве средства повышения эффективности выполнения боевой задачи. Она предоставляет дополнительные возможности поисково-спасательным группам по точной доставке необходимых медикаментов и спасательного оборудования», — продолжил он, указав также на потребность в подобных военных специалистах в сфере оказания гуманитарной помощи и операций по ликвидации последствий катастроф.

«Перед многими подразделениями министерства обороны, в штате которых состоят специалисты категории MFF (military free fall, военнослужащие, способные выполнять затяжные прыжки), также стоят задачи реагирования на природные катастрофы в удаленных районах с очень ограниченными зонами для посадки. Постоянно проверяемое в очень жестких условиях на Эвересте, парашютирующее крыло MS-360 зарекомендовало себя как крайне эффективный «универсальный парашют», который позволяет спасательным группам точно приземляться в ограниченных районах высадки», — пояснил Баст. Он также отметил, что парашютные пожарные отряды Агентства лесной охраны США начали переходить от существующих круглых парашютов к парапланам CPS CR-360 для более точной доставки персонала в заданные районы.

Грузовые платформы высокоточной доставки, обозначенные инфракрасными фонарями для положительной идентификации своими силами, приближаются к месту посадки

Собачья работа

Также не следует забывать о доставке рабочих собак (или К-9) в район операции, которые «пристегиваются» к операторам, развертывающимся на парашютных системах типа параплан. Как пояснил Баст, использование К-9 в поисково-спасательных и боевых операциях последние годы растет экспоненциально, поскольку подразделения ССО особо рассчитывают на собак при выполнении самых разных задач, варьирующихся от наблюдения/разведки, прямого боестолкновения, военной и гуманитарной помощи и до помощи при чрезвычайных ситуациях.

Компания CPS специально разработала для международного сообщества ССО два решения, К-9 Jump Bag и Mannequin Solution, с целью обеспечения операций и выполнения учебных сценариев соответственно, включая тандемные прыжки оператора с собакой.

Список изделий компании CPS для высотных прыжков, многие из которых состоят на вооружении ССО разных стран, включает также элементы усиления, например, парашютные стропы, скрепы и крепления строп. Кроме того, в портфолио компании входят парашюты серии MS, М1 и М2, специально созданные для «большого число раскрытий, отличающиеся превосходной стабильностью, маневренностью и увеличенной дальностью».

«Модели MS М1/М2 в настоящее время используются специальными подразделениями по всему миру, предоставляя возможность приземляться на ограниченные площадки с помощью тормозных систем разного типа», — сказал Баст. Он описал модель MS-M4 как систему, с которой можно прыгать как затяжным прыжком, так и с помощью вытяжной стропы в отличие от моделей MS-M1 и MS-М2, которые предназначены только для затяжных прыжков.

«Парашют для затяжных и незатяжных прыжков MS-360-M4 является улучшенным вариантом MS-M2. Характеристики планирования были существенно улучшены, более чем на 33%, что позволило получить аэродинамическое качество (относительную дальность планирования) от 3.5:1 до 4:1 в зависимости от конфигурации и нагрузки».

«Наша экспериментальная программа показала, что несколько незначительных доработок конструкции существующих парашютов MS, в основном это изменения формы купола и клевант, улучшили аэродинамическое качество. MS-M4 базируется на смешанной конструкции, за счет сохранения подвесных строп из полиэстера были исключены нежелательные колебания, связанные с вытягиванием строп, что возможно сказывалось на качестве планирования», — пояснил Баст.

Парашют MS-360-M4 имеет площадь купола 33 м 2 , размах крыла 9 метров, он способен нести груз до 205 кг. С ним можно прыгать как с высоты 10500 метров (стандартная высота полета авиалайнера), так и (после небольшой регулировки) с минимальной высоты всего 900 метров.

Между тем, российский спецназ начал получать специальную парашютную систему Арбалет-2 , разработанную НПП «Звезда». По данным министерства обороны, российский спецназ бригад специального назначения испытывал снаряжение в арктических условиях весь 2016 год, проводя высадки десанта с малых высот с целью быстрого входа в заданные районы.

По данным компании «Звезда», с парашютной системой специального назначения Арбалет-2 можно совершать прыжки, как с самолетов, так и с вертолетов на скорости полета до 350 км/ч; при полетной массе до 160 кг она обеспечивает надежную работу на высотах до 4000 метров.

Специальная парашютная система Арбалет-2

При скорости вертикального снижения не более 5 м/с и горизонтальной скорости снижения не менее 10,5 м/с планирующий парашют Арбалет-2 обладает превосходной маневренностью (разворот на 360 градусов за время до 8 секунд), включая устойчивое снижение в турбулентной атмосфере. Парашют также вводится в действие звеном ручного раскрытия, как правой, так и левой рукой.

Поскольку в общем оперативном пространстве сохраняется мощный акцент на использовании ССО, необходимы развитые возможности для доставки личного состава в сложные районы боевых операций. Парашютный десант с больших высот будет оставаться основным тактическим приемом специальных сил, стремящихся скрытно десантироваться в заданные районы. Постоянное повышение аэродинамических качеств парашютных систем позволит обеспечивающей авиации развертывать десантные группы с безопасного расстояния и безопасных высот и свести к минимуму риск обстрела зенитными системами противника, в частности, переносными зенитными ракетными комплексами.

Использование: изобретение относится к авиационной технике, в частности к управляемым парашютным системам с платформами для доставки различных грузов в труднодоступные районы стихийных бедствий, аварий, геологоспасательных и геологоразведочных работ. Система обеспечивает точное приземление грузов и сокращенные потери груза, а также позволяет применять систему в различное время суток и при различных погодных условиях. Сущность изобретения: парашютная система содержит планирующий парашют, подвесную систему, грузовую платформу и контейнер управления стропами парашюта. Управление осуществляется командным блоком путем создания управляющих перегрузок с помощью затягивания строп на основе анализа информации о маяке, размещенном в месте приземления груза. Анализ информации осуществляется блоком обнаружения, размещенным на грузовой платформе, связанным с командным блоком, один выход которого соединен с блоком управления, а другой выход обратной связью с блоком обнаружения. 3 ил.

Изобретение относится к авиационной технике, в частности к управляемым парашютным системам с платформами для доставки различных грузов в труднодоступные районы стихийных бедствий, аварий, геологоспасательных и геологоразведочных работ. Известны управляемые планирующие парашютные системы (ПС), которые имеют различное решение средств управления аэродинамическими параметрами парашюта, например подтягивание строп, отстрел масс и т. д. Известна планирующая парашютная система для транспортировки полезной нагрузки которая содержит парашют в виде крыла, подвесную систему груз-парашют, а также блок управления стропами парашюта для изменения состояния крыла и траектории полета. Эта конструкция, как и другие известные системы, не обладает достаточной эффективностью, не обеспечивает точного приземления грузов, что приводит к значительным потерям грузов. Предлагаемая управляемая парашютная система для доставки грузов содержит планирующий парашют, подвесную систему, грузовую платформу и контейнер управления стропaми парашюта. На грузовой платформе дополнительно размещены блок обнаружения маяка с устройством обработки информации и блок выработки команд управления (командный блок), причем выход блока обнаружения связан с входом командного блока управления, один выход которого соединен с контейнером управления, а другой выход обратной связью с блоком обнаружения. С увеличением количества чрезвычайных ситуаций, таких как чернобыльская авария, кораблекрушения, землетрясения, возникновением локальных вооружениях конфликтов (Югославия, Армения, Абхазия), когда необходима доставка продовольствия, медикаментов, спасательной техники в труднодоступные районы, остро встает задача точной доставки грузов в строго заданный район или на площадку, ограниченную малыми размерами, площадь в городе, палубу корабля и т. д. порой в трудных погодных условиях (ветер, шторм, ночное время суток). Эти задачи решаются с применением предлагаемого изобретения, в соответствии с которым изменение аэродинамических параметров парашюта осуществляется на основе анализа информации о маяке, расположенном в месте приземления груза. Анализ информации и выработка команд управления осуществляются блоком обнаружения и командным блоком в соответствии с заданной программой функционирования. В зависимости от наличия на месте приземления груза маяка того или иного типа на платформе устанавливается соответствующий тип датчика, выполненный в модульном варианте. Могут применяться датчики маяка, основанные на различных физических принципах, или работающие на тепловой контраст, или комбинированные. Обнаружение маяков может осуществляться с помощью пассивных средств обнаружения, активных (с помощью систем излучения и приема сигналов) или полуактивных средств (с подсветкой маяка). Применение парашютной системы, практически самонаводящейся на маяк, позволяет достичь точности приземления груза 5-150 м в зависимости от условий применения, сократить потери груза до 20% а также применять систему в различное время суток и при различных погодных условиях. На фиг. 1 показана последовательность функционирования управляемой парашютной системы; на фиг. 2 представлена блок-схема системы; на фиг. 3 схема блока обнаружения для ИК-диапазона. Управляемая парашютная система (ПС) содержит планирующий парашют 1, грузовую платформу, контейнер 2 управления стропами, установленные на грузовой платформе блок 3 обнаружения и командный блок 4 для выработки команд управления. В системе применяется серийный управляемый парашют в виде крыла, например УПГ-0,1 или ПО-300, и серийная платформа для размещения груза, которая имеет амортизирующие элементы для смягчения удара при приземлении. Контейнер управления применяется также серийный и включает источник питания и блок управления, состоящий из механического привода строп с электродвигателями и усилителями мощности. Блок обнаружения различный для разных диапазонов длин волн, для ИК-диапазона может содержать ИК-датчик маяка, представляющий гироскопическое следящее устройство с электронным блоком, механизм прокачки, блок разгона ротора следящего гироскопа. Гироскопическое следящее устройство непрерывно совмещает оптическую ось объектива датчика маяка, воспринимающего ИК-излучения, с направлением на маяк. Датчик маяка формирует управляющий сигнал, пропорциональный угловой скорости линии визирования, и содержит (фиг. 3) приемное устройство 5, электронный блок 6, логическое устройство 7, узел 8 коррекции, устройство 9 сканирования и устройство 10 пеленга. Командный блок 4 содержит стандартные элементы фазовый детектор пеленга, вычислитель разности сигналов пеленга, счетчик нуля пеленга, коммутатор коррекции и устройство формирования команды управления и может быть выполнен на базе микропроцессора. Процесс управления и выведения парашютной системы на маяк можно представить в виде следующих этапов: выведение системы в область местной вертикали к точке размещения маяка с 2-мя проходами над маяком разворот системы курсом от маяка после первого обнаружения. Выбор оптимальных параметров планирования ПС и разворот курсом на маяк; сближение системы с маяком по траектории с оптимальным углом планирования к плоскости земли. Система функционирует следующим образом. В зависимости от наличия на месте приземления груза маяка того или иного типа на платформе устанавливается соответствующий блок обнаружения, выполненный в модульном варианте, например действующий в ИК-диапазоне. Летчик выводит самолет (вертолет) в район бедствия и осуществляет предварительное целеуказание. Выброс парашютной системы с грузовой платформой осуществляется через грузовой люк носителя любым известным способом, например с помощью транспортера. После стабилизации ПС начинается режим поиска и обнаружения маяка путем сканирования подстилающей поверхности по сходящей спирали до момента обнаружения и захвата маяка. Закон поиска маяка определяется из условия осмотра подстилающей поверхности без пропуска в телесном угле с учетом ветрового сноса. При сканировании информация о маяке поступает на приемное устройство 5 датчика маяка, находящееся на роторе гироскопического следящего устройства. В блоке 6 происходит анализ полученной информации и принятие решения о наличии маяка. Затем сигнал усиливается по мощности и поступает на логическое устройство 7. Если маяк обнаружен, то сигнал через блок 8 в виде сигнала коррекции поступает в приемное устройство 5 датчика маяка и датчик переходит на режим слежения. Если маяк не обнаружен, происходит дальнейшее сканирование подстилающей поверхности: информация от устройства 9 сканирования через логическое устройство 7 поступает в блок 6, где происходит обработка информации, поступившей на следующих этапах сканирования. Для исключения ложных захватов маяка парашютная система должна два раза пройти над маяком. В момент прохода системы над маяком в первый раз срабатывает счетчик 10 пеленга, по сигналу которого в командном блоке 4 формируется команда управления стропами, которая передается в контейнер 2 управления, при этом отключается управление по угловой скорости линии визирования и начинается разворот ПС от маяка на 360 о. После завершения разворота на 360 о происходит полет ПС курсом на маяк до момента второго прохода над целью. На участках разворота ПС управление осуществляется по углу пеленга, а на участках планирования по угловой скорости линии визирования. В момент фиксации счетчиком 10 пеленга второго прохода над маяком затягиваются обе стропы управления для ускорения снижения системы и достижения заданного угла пеленга оптимального для осуществления планирования к маяку. После этого происходит разворот курсом на маяк. Момент разворота определяется по величине сигнала пеленга в связанной системе координат. По завершении разворота курсом на маяк начинается этап наведения на маяк. Управление осуществляется по двум составляющим сигнала коррекции U ку и U кz . Вектор скорости ПС всегда направлен по линии визирования маяка. Так как планирование происходит против ветра, аэродинамическое качество ПС изменяется за счет одновременной затяжки и ослабления обеих строп и тем самым изменяется направление вектора скорости системы в плоскости местной вертикали. Таким образом, управление в плоскости местной вертикали производится в зависимости от фазы сигнала коррекции U ку путем симметричного затягивания или ослабления строп управления, а управление в плоскости земли производится по фазе соответствующего сигнала коррекции U кz путем ограниченного по величине затягивания или ослабления одной из строп от их симметричного положения. Для осуществления мягкой посадки по сигналу высотомера, расположенного на платформе, на определенной высоте затягиваются обе стропы управления на оптимальную длину. Для исключения попадания груза в костер, когда он используется в качестве маяка, в командном блоке 4 предусмотрена схема смещения. Проведенные испытания и математическое моделирование подтвердили эффективность системы с достижением указанных выше результатов.