Исполнение желаний

Явления, происходящие в металле при нагреве - ручная ковка - металл - железо. Что происходит с медом при нагревании? Удельная теплота плавления

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры .

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры .

Количество теплоты

Это энергия , которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле


Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость - известная, уже вычисленная для всех веществ величина, в физических таблицах.

Теплоемкость вещества С - это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление - переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование - это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина,

Вопрос о том, что происходит с медом при нагревании, волнует многих. Эта тема сопровождается рядом мифов. Главным аргументом о вреде является образование ядовитого вещества оксиметилфурфурола. При этом упор делался на то, что ежедневное применение натурального нагретого продукта способно чуть ли не убить организм. Чтобы понять, что же действительно происходит с медовой массой, и можно ли нагревать мед, стоит более детально взглянуть на проблему.

Особенности структуры

Компоненты меда особо чувствительны не только к нагреванию, но и к условиям хранения. Продукт представляет собой частично переработанную пыльцу цветов, которая образуется в зобе медоносной пчелы. Все ферментативные процессы в нем длятся в течение двух лет, все это время масса обладает целебными свойствами. При этом целебные качества состава различаются в зависимости от количества ферментов и азотистых веществ.


Поэтому польза меда от разных пчел может отличаться. Более ценными сортами являются те, что были собраны пчелами из разных трав. Продукт используют в пищу для лечения заболеваний, в косметологии, для ухода за кожей и локонами. И вот тут-то и возникает спорный вопрос о нагревании, поскольку для многих рецептов мед нагревают, заявляя о пользе, в то время как та же наука доказывает, что нагревание делает полезный состав губительным для здоровья человека. На деле изменения есть, но не все так однозначно.

К примеру, для косметических масок мед приходится растапливать, поскольку не всегда есть возможность наносить свежий, пока еще не засахарившийся состав. Густая масса не сможет соединиться с другими компонентами рецептов, а крупные частицы могут поранить кожу. Растапливают продукт и в современной медицине, однако нужно знать предельный уровень температуры, чтобы не изменить структуру.


Иногда нельзя обойтись без нагревания (к примеру, нужно спасти мед, который начал бродить). Однако и метод нагревания может сказаться на целебных качествах состава. Поэтому в одних случаях при нагревании он остается полезным, а в других не только теряет целебные свойства, но и может стать токсичным.

Влияние температуры

Мало кто из покупателей задумывается о том, что перед фасовкой натуральный мед нагревают, применяя для розлива специальные машины. Не стоит рассматривать синтетический аналог, который не имеет вовсе никакой пользы. Что же касается натурального продукта, его обязательно фильтруют, что невозможно, когда он загустевший. Изменение температуры структуры приводит к запуску определенных процессов и скажется на консервирующем действии.

По этой причине нужно знать, что происходит при нагревании с разными показателями температуры. Считается, что питательные и целебные свойства с повышением температуры до +40 +45 градусов снижаются в незначительной мере и что чем меньше греть мед, тем выше будут его бактерицидные и иммуномодулирующие качества. Однако при нагревании ферментов и разрушении некоторых витаминов высвобождаются подвижные ионы металлов. А это активирует действие биологических катализаторов. При этом нормализуется деятельность клеток.

Поэтому нагрев до 40 градусов не столь страшен для медовой массы и ее пользы. «Живые» свойства сохраняются при температуре не более 15-25 градусов С (комнатной t). Однако это не означает, что нагретый состав нельзя употреблять в пищу или использовать в качестве масок для кожи и волос.

Сложно спорить и принимать одну из сторон, поскольку народная медицина доказывает эффективность горячего чая с медом, в то время как ученые считают, что горячий чай – не более чем согревающий напиток. Однако замечено, что употребление медового чая, действительно, способствует скорому выздоровлению. То же можно сказать и о теплых масках для кожи и волос: холодные составы не столь эффективны при регулярном применении.


Увеличение концентрации оксиметилфурфурола происходит в том случае, когда его нагревают до температуры +80 градусов. Это канцероген, который может накапливаться в организме и практически не выводится из него.

Но стоит заметить, что его количество даже при частом употреблении в разогретом виде в десятки раз меньше, чем при аналогичном употреблении газированных напитков, а также жареного кофе.

Мед не превращается в смертельный яд при нагреве, но с существенным повышением температуры он теряет энергетическую ценность. Поэтому более эффективным решением будет пить горячее молоко или чай отдельно, не смешивая с медом в 1 напиток. Отравиться им сразу невозможно, поскольку ни один человек не сможет съесть разогретый продукт в огромном количестве (порядка 6 кг в день). При температуре +50 градусов мед теряет свой аромат и полностью утрачивает бактерицидные свойства. И тут становится понятно, почему более эффективен и полезен товар, купленный у пчеловодов, нежели продукт, разлитый по магазинным упаковкам.


Как нужно греть?

Сегодня мед разогревают по-разному. Но не каждый способ позволяет сохранить полезные свойства в максимальной мере без вреда здоровью. Источником оксиметилфурфурола является фруктоза, находящаяся в составе. При неправильном нагревании образование токсина ускоряется.


Чтобы понять, что можно, а что нельзя, стоит узнать нюансы разных приемов придания меду пластичности. Водяная баня считается более щадящим и правильным методом растапливания густого продукта с сохранением его целебных качеств. Максимальный предел температуры составляет +35 +40 градусов. Берут широкую тару и наполняют ее чистой водой.

На дно опускают натуральную ткань либо полотенце, после чего опускают емкость с медом и ставят на плиту. Внимательно следят за тем, чтобы температура воды не превышала +40 градусов С, для чего пользуются кулинарным термометром. После плиту ставят на минимальную отметку и непрерывно помешивают массу, пока мед не растает. Это позволит растопить мед медленно и равномерно.

Другим вариантом нагрева является подогрев застывшей массы возле батареи. Правда, такой метод самый медленный по сравнению с другими, но он эффективен, не вреден и позволяет сохранить всю пользу меда. Поэтому при постепенном растапливании он не выделяет вредных веществ. Банку с засахарившимся продуктом ставят возле радиатора на расстоянии от 10 до 40 см.



Кроме двух перечисленных методов, для нагрева используют электрический духовой шкаф с регулятором температуры. В летнее время года можно ставить банку с медом на балкон, залитый солнцем. Однако нельзя допускать прямого попадания солнечных лучей.


Как хранить?

Важно учесть, что и хранение меда должно быть правильным. В противном случае он не только засахарится и загустеет, но может и забродить. Если хранить его правильно, он не утратит целебных качеств. Тара не должна быть стеклянной, поскольку при загустении мед будет сложно достать из банки, не разбив ее.

Для хранения подойдет эмалированная, керамическая либо деревянная емкость. Нужна крышка, чтобы не пропускать воздух и влагу. Чтобы мед не впитал посторонние запахи, банки нужно помыть с применением соды. Нежелательно постоянно и долго хранить мед в холоде при низкой температуре, поскольку она тоже влияет на консистенцию и полезные качества состава.


Фасовка в домашних условиях позволит сберечь полезные компоненты. Натуральный мед можно разлить по емкостям сразу после покупки, пока он свежий и жидкий.

Однако кислотность меда конкретного вида различна, поэтому биохимические процессы под действием имеющихся в составе ферментов будут происходить постоянно. При нагревании до +50 градусов в течение нескольких часов наряду с уменьшением числа ферментов увеличится количество 5-гидроксиметилфурфурола.

Как отличить?

При высокой температуре нагревания мед потемнеет. Перегретым считается продукт, прошедший термическую обработку при температуре более +60 градусов С. Нередко для продажи недобросовестный продавец может растопить мед, чтобы покупатель видел жидкую консистенцию и считал продукт свежевыкачанным. Определить свежесть можно внешне: независимо от разновидности, свежий продукт не имеет водянистой структуры. Он тягучий, имеет ярко выраженный цветочный запах и вкус.


Если при покупке продукт не имеет запаха и подозрительно темный на вид, – это разогретый мед. Кроме того, у старого меда карамельный привкус.

Сегодня каждый продукт подвергается тщательной проверке на вред или пользу для организма. Не исключением является и мед. Однако согласно исследованиям, нет научно доказанных данных, что нагрев провоцирует отравление организма. Существует немало рецептов народной медицины, где требуется именно нагретый мед.

При этом согласно многочисленным отзывам, оставленным на просторах Всемирной паутины, именно добавление меда в горячие напитки увеличивает лечебные свойства и способствует скорейшему выздоровлению. Отмечается, что чем он свежее, тем эффективнее. Применение в косметологии также указывает на необходимость нагревания меда не столько для растапливания и соединения с другими компонентами масок, сколько для лечебного эффекта. Везде отмечается, что медовые маски должны быть теплыми, иначе их эффективность будет снижена. При этом указывается, что регулярное нанесение теплых медовых составов на пряди и корни позволяет добиться роскошных волос, вернуть им природную красоту и жизненный блеск.



О том, опасен ли разогретый мед, смотрите в следующем видео.

Провода летом провисают намного силь­нее, чем зимой, т. е. летом они длиннее. Если набрать полную бу­тылку холодной воды и поставить в теплое место, то со временем часть воды из бутылки выльется, так как во время нагревания вода расширяется. Воздушный шарик, вынесенный из комнаты на мороз, уменьшается в объеме.

1. Убеждаемся в тепловом расширении твердых тел, жидкостей и газов

Несложные опыты и многочисленные на­блюдения убеждают нас в том, что, как прави­ло, твердые тела, жидкости и газы во время нагревания расширяются, а во время охлажде­ния сжимаются.

Тепловое расширение жидкостей и газов лег­ко наблюдать с помощью колбы, шейка которой плотно закупорена, а в пробку вставлена стек­лянная трубка. Перевернем колбу, заполненную воздухом, в сосуд с водой.

Теперь достаточно взяться за колбу рукой, и в скором времени воз­дух, расширяясь в колбе, будет выходить в виде пузырьков из трубки под водой (рис. 2.30).

Теперь наполним колбу какой-нибудь подкра­шенной жидкостью и закупорим так, чтобы часть жидкости вошла в трубку (рис. 2.31, а). Обозна­чим уровень жидкости в трубке и опустим колбу в сосуд с горячей водой. В первый момент уровень жидкости немного снизится (рис. 2.31, б), и это можно объяснить тем, что сначала нагревается и расширяется колба, а уже потом, нагреваясь, расширяется вода.

Рис. 2.30. При нагревании воз­дух в колбе расширяется и часть его выходит из колбы - это видно по пузырькам воздуха, выходящим из трубки


Рис. 2.31 Опыт, демонстрирующий, что при нагревании жидкость (как твердые тела и газы) расширяется: а - закрытая пробкой колба с жидкостью в трубке; б - в первый момент нагрева­ния уровень жидкости немного снижается; в - при дальнейшем нагревании уровень жидкости значительно повышается

В скором времени мы убедим­ся, что по мере нагревания колбы и воды в ней уровень жидкости в трубке заметно повысится (рис. 2.31, в). Итак, твердые тела и жидкости, как и газы, во время нагревания расширяются. Исследовательским путем выяснено, что твердые тела и жидкости во время нагревания расширяются намного меньше, чем газы.

Тепловое расширение твердых тел можно продемонстрировать также на следующем опы­те. Возьмем медный шарик, который в ненагре­том состоянии легко проходит сквозь пригнан­ное к нему кольцо. Нагреем шарик в пламени спиртовки и убедимся в том, что шарик теперь не будет проходить сквозь кольцо (рис. 2.32, а). После охлаждения шарик снова легко пройдет сквозь кольцо (рис. 2.32, б).

2. Выясняем причину теплового расширения

В чем же причина увеличения объема тел во время нагревания, ведь количество молекул с увеличением температуры не изменяется?

Атомно-молекулярная теория объясняет теп­ловое расширение тел тем, что с увеличением температуры увеличивается скорость движения атомов и молекул. В результате увеличивается среднее расстояние между атомами (молекулами).


Рис. 2.32. Опыт, иллюстрирую­щий тепловое расширение твер­дых тел: а - в нагретом состоя­нии шарик не проходит сквозь кольцо; б - после охлаждения шарик проходит сквозь кольцо

Соответственно, увеличивает­ся объем тела. И наоборот, чем ниже температура вещества, тем меньше межмолекулярные промежутки. Исключением является вода, чугун и некоторые дру­гие вещества. Вода, например, расширяется только при температуре выше 4 °С; при температуре от О 0C до 4 0C объем воды во время нагревания уменьшается.

3. Характеризуем тепловое расширение твердых тел

Выясним, как изменяются линейные размеры твердого тела вследствие изменения температуры . Для этого измерим длину алюминиевой трубки, по­том нагреем трубку, пропуская сквозь нее горячую воду. Спустя некоторое время можно заметить, что длина трубки незначительно увеличилась.

Заменив алюминиевую трубку стеклянной такой же длины, мы убедим­ся, что в случае одинакового увеличения температуры длина стеклянной трубки увеличивается намного меньше, чем длина алюминиевой. Таким об­разом, делаем вывод: тепловое расширение тела зависит от вещества, из которого оно изготовлено.

Физическая величина , характеризующая тепловое расширение материала и численно равная отношению изменения длины тела вследствие его нагрева­ния на I °С и его начальной длины, называется температурным коэффициен­том линейного расширения.

Температурный коэффициент линейного расширения обозначается сим­волом а и вычисляется по формуле:


Из определения температурного коэффициента линейного расширения можно получить единицу этой физической величины:

Ниже в таблице приведены температурные коэффициенты линейного расширения некоторых веществ.

4. Знакомимся с тепловым расширением в природе и технике

Способность тел расширяться во время нагревания и сжиматься во время охлажде­ния играет очень важную роль в природе. По­верхность Земли прогревается неравномерно. В результате воздух вблизи Земли также рас­ширяется неравномерно, и образуется ветер, предопределяющий изменение погоды. Нерав­номерное прогревание воды в морях и океанах приводит к возникновению течений, которые существенно влияют на климат. Резкие коле­бания температуры в горных районах вызыва­ют расширение и сжатие горных пород. А по­скольку степень расширения зависит от вида породы, то расширения и сжатия происходят неравномерно, и в результате образуются тре­щины, которые приводят к разрушению этих пород.

Тепловое расширение приходится прини­мать во внимание при строительстве мостов и линий электропередач, прокладывании труб отопления, укладке железнодорожных рельсов, изготовлении железобетонных конструк­ций и во многих других случаях.

Явление теплового расширения широко ис­пользуется в технике и быту. Так, для авто­матического замыкания и размыкания элект­рических цепей используют биметаллические пластинки - они состоят из двух полос с раз­ным коэффициентом линейного расширения (рис. 2.33). Тепловое расширение воздуха по­могает равномерно прогреть квартиру, охла­дить продукты в холодильнике , проветрить комнату.

Рис. 2.33. Для изготовления авто­матических предохранителей (а), для автоматического включения и выключения нагревательных приборов (б) широко используют­ся биметаллические пластинки (в). Один из металлов при увеличении температуры расширяется намно­го больше, чем другой, в результа­те этого пластинка изгибается (г) и размыкает­ся (или замыкается)

5. Учимся решать задачи

Длина стального железнодорожного рельса при температуре О о C равна 8 г. На сколько увеличится его длина в зной­ный летний день при температуре 40 °С?

Анализ условия задачи. Зная, как изменя­ется длина стальной детали вследствие нагре­вания на 1 °С, т. е. зная температурный ко­эффициент линейного расширения стали, мы найдем, на сколько изменится длина рельса вследствие нагревания на 40 °С. Температурный коэффициент линейного расширения стали найдем по таб­лице, приведенной выше.


  • Подводим итоги

Твердые тела, жидкости и газы во время нагревания, как правило, расширяются. Причина теплового расширения в том, что с увеличением температуры увеличивается скорость движения атомов и молекул. В ре­зультате увеличивается среднее расстояние между атомами (молекулами). Тепловое расширение твердых веществ характеризуется коэффициентом ли­нейного расширения. Коэффициент линейного расширения численно равен отношению изменения длины тела вследствие нагревания его на 1 о C и его начальной длины

  • Контрольные вопросы

1. Приведите примеры, подтверждающие, что твердые тела, жидкос­ти и газы расширяются во время нагревания.

2. Опишите опыт, де­монстрирующий тепловое расширение жидкостей.

3. В чем причина увеличения объема тел во время нагревания?

4. От чего, кроме тем­пературы, зависит изменение размеров тел во время их нагревания (охлаждения)?

5. В каких единицах измеряется коэффициент ли­нейного расширения?

  • Упражнения

1. Выберите все правильные ответы. Когда тело охлаждается, то:

а) скорость движения его молекул уменьшается;
б) скорость движения его молекул увеличивается;
в) расстояние между его молекулами уменьшается;
г) расстояние между его молекулами увеличивается.

2. Как изменится объем воздушного шарика, если мы перенесем его из холодного помещения в теплое? Почему?
3. Что происходит с расстояниями между частичками жидкости в тер­мометре в случае похолодания?
4. Правильным ли является утверждение, что во время нагревания тело увеличивает свои размеры, так как размеры его молекул уве­личиваются? Если нет, предложите свой, исправленный, вариант.
5 . Зачем на точных измерительных приборах указывают темпера­туру?
6. Вспомните опыт с медным шариком, который вследствие нагрева­ния застревал в кольце (см. рис. 2.32). Как изменились вследствие нагревания: объем шара; его масса; плотность; средняя скорость движения атомов?
7. После того как пар кипящей воды пропустили через латунную трубку, длина трубки увеличилась на 1,62 мм. Чему равен коэффи­циент линейного расширения латуни, если при температуре 15 0C
длина трубки равна 1 м? Напоминаем, что температура кипящей воды равна 100 °С.
8. Платиновый провод длиной 1,5 м находился при температуре 0 °С. Вследствие пропускания электрического тока провод раскалился и удлинился на 15 мм. До какой температуры он был нагрет?
9. Медный лист прямоугольной формы, размеры которого при темпе­ратуры 20 0C составляют 60 см х 50 см, нагрели до 600 °С. Как из­менилась площадь листа?

  • Экспериментальные задания

1. Как, имея дощечку, молоток, два гвоздика, спиртовку и пинцет, показать, что размер монеты в 5 копеек во время нагревания уве­личивается? Выполните соответствующий опыт. Объясните наблю­даемое явление.

2. Наполните бутылку водой так, чтобы внутри остался пузырек воз­духа. Нагрейте бутылку в горячей воде. Проследите, как изменят­ся размеры пузырька. Объясните результат..

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Воздух – одинаковый на всем земном шаре.

Он будет расширяться при нагревании и сжиматься при охлаждении в любой стране и городе, в любом поселке или деревне.

Программное содержание: Закрепить представление детей о свойствах воды, снега, льда расширять представления о свойствах воды (прозрачная, не имеет формы и запаха) и воздуха (расширяется при нагревании и сжимается при охлаждении) стимулировать желание самостоятельно делать выводы и выдвигать гипотезы.

Оборудование: Воздушные шары, пластмассовые бутылки, тазики с горячей (не более 60 С) и холодной водой, изображение воздушного шара, соль, сахар, пластмассовые стаканчики, ложки, емкости для воды (колбы, пробирки, бутылки, банки), фильтры (салфетки), лед, глобус.

Ход занятия:

Организационный момент: Игра «Ракета»

Воспитатель: На чем можно отправиться в путешествие? (ответ) Предлагаю сегодня воспользоваться воздушным шаром.

Вы не против? Нам в пути нужен важный помощник. О нем говорится в загадке.

Через нос проходит в грудь

И обратно держит путь

Невидимка он, и все же

Без него мы жить не можем.

Воздух везде. Посмотрите вокруг. Кто видел воздух? (ответ) Да воздух невидимка, но он всегда вокруг нас. Без него мы не могли бы жить, т.к. нечем было бы дышать. А теперь, ребята, давайте проверим, как долго мы ожжем не дышать. А почему мы не видим воздух? (ответ) Воздух невидим, т.к. он прозрачен. А хотите увидеть воздух? Но сначала повторим правила безопасного поведения при экспериментировании:

    Не толкай соседа во время работы Сначала посмотри, потом повтори Убери, на место положи С горячей водой будь осторожен.

Но перед опытами давайте сделаем зарядку для глаз.

Зарядка для глаз.

Опыт 1: Стакан опускается в банку — попадает вода в стакан? Почему нет? (ответ)

Вывод: В стакане есть воздух, он не пускает туда воду.

Опыт 2: Стакан наклонить — что появляется (пузырьки) Откуда они взялись? (ответ)

Вывод: Воздух выходит из стакана, его место занимает вода.

Воспитатель открывает изображение воздушного шара.

Воспитатель: Скажите, зачем под шаром расположена горелка? (ответ) Сейчас мы с вами узнаем, что происходит с воздухом, когда его нагревают.

Опыт 3: Пустой воздушный шарик надеть на горлышко пласт. Бутылки. Подержать ее в течении 1 мин. В горячей воде. — Что вы видите? (Шар надувается) Почему? (ответ)

Вывод: При нагревании воздух в бутылке расширяется и заполняет шар, он надувается.

Воспитатель ставит бутылку с шариком в холодную воду.

— Что вы видите? (Шарик сдувается) Почему? (ответ)

Вывод: Воздух при охлаждении сжимается и выходит из шарика — он сдувается.

Воспитатель: Зачем же нужна горелка? (ответ) При нагревании воздух расширяется и заполняет шарик. Когда горелка выключается, воздух постепенно охлаждается и сжимается — шар сдувается.

Воспитатель: Отправляемся в полёт! Занять свои места. Полетели. (Дети садятся на стульчики. Воспитатель достаёт глобус.) Посмотрите на глобус. Так выглядит наша земля из космоса. Что на глобусе обозначено синим цветом? (Вода) Послушайте стихотворение о воде.

Вы слыхали о воде?

Говорят она везде!

В луже, море, океане

И водопроводном кране.

Как сосулька, замерзает,

В лес туманом заползает,

На плите у вас кипит,

Паром чайника шипит,

Растворяет сахар в чае.

Мы её не замечаем.

Мы привыкли, что вода

Наша спутница всегда!

Без воды нам не умыться,

Не наесться, не напиться.

Смею вам я доложить #150

Без воды нам не прожить!

Воспитатель: И, правда, без воды жизнь представить сложно. Внимание, вот мы и прилетели! Приземляемся! (Дети выходят.) Кто-то стоит у нас на пути. Кто? (Это водяной)

Водяной: Здравствуйте! Очень рад вас видеть! Я так люблю шлёпать босыми ногами по лужам, купаться, брызгаться. После этого на руках и ногах в солнечных лучах переливаются прозрачные капельки. Только мне непонятно: куда потом исчезает эта вода? И еще, зимой, я хотел искупаться в своей любимой речке, а вместо воды — лёд. Откуда он взялся?

Воспитатель: П опробуем ответить на вопросы. Для этого нужно вооружиться вниманием и терпением. Пройдёмте в лабораторию.

Пальчиковая гимнастика.

Воспитатель: В одяной, ребята покажут, какими свойствами обладает вода. Обратите внимание: на столе лежит лёд. Мы позже к нему вернёмся.

Опыт 4: В зять стакан с чистой водой и понюхать её.

Воспитатель: Имеет ли вода запах? (Нет, вода не имеет запаха.)

Вывод: Вода не имеет запаха.

Опыт 5: Поставить на картинку стакан, а водой и стакан с молоком.

Воспитатель: Вам видно, что нарисовано на картинке? (Там, где вода, видно, а где молоко — нет.)

Вывод: Вода прозрачная.

Опыт 6: Положить в стакан ложку сахару или соли, размешать.

Воспитатель: что произошло? (Сахар растворился)

Вывод: Вода является растворителем для некоторых веществ.

Опыт 7: Разлить воду по разным сосудам.

Воспитатель: какую форму приняла вода? (Форму той посуды, в которую её налили)

Вывод: Вода не имеет постоянной формы, она принимает форму того сосуда, в который её налили.

Физкультминутка: Игра «Воздух, огонь, вода, земля»

Воспитатель: Ребята, давайте пройдем к столу, на котором был лёд. Что вы видите? Почему это произошло?

Водяной: жаль, что лёд растаял, я так люблю его есть.

Воспитатель: Что ты! Сосульки и лёд нельзя есть! Почему? Давайте докажем, что лед грязный. (профильтруем)

Опыт 8: Налить талую воду из тарелки в воронку с фильтром.

Воспитатель: Чистым или грязный лёд? Почему? Водяной, можно есть лёд или нет?

Водяной: что вы! Я больше никогда не буду есть лёд и снег.

Воспитатель: давайте повторим свойства воды.

Водяной: Спасибо вам. Я запомню свойства воды и никогда их не забуду. Ват вам шарики на память о этом путешествии. До свидания.

Воспитатель: нам пора возвращаться в детский сад. Занимайте места. Закрываем глаза. Раз, два, три. Прилетели.

Человек! Запомни навсегда:

Символ жизни на Земле — вода!

Экономь её и береги.

Мы ведь на планете не одни!

Подведение итогов. Что узнали о воде?

Что использовалось:

  • электрическая плитка
  • жидкий азот
  • воздушный шарик
  • конфетти
  • пластиковая бутылка

Описание:

Очень наглядный опыт! Многие догадываются, что при нагревании вещества увеличиваются в объеме, а при охлаждении – уменьшаются. И не важно, твердое это тело, жидкость или газ. Всё изменяет размер. Вот только в обычной жизни в подобное слабо верится. Наливаешь себе два половника супа, разогреваешь. Как было два, так два и осталось. Да и кастрюля в холодильнике меньше места не станет занимать, когда охладится.

На самом деле объем меняется.

Только незначительно, незаметно для человеческого глаза. При нагревании молекулы в веществе становятся более подвижными и начинают отдаляться друг от друга. Расстояние больше – объем больше. При охлаждении, соответственно, наоборот. В твердом веществе самые сильные связи между молекулами, в жидком – послабее, а в газообразном – самые слабые. Вот, и выходит, что газ изменяет объем легче, чем вещества в других агрегатных состояниях.

Теперь об условиях. Чем выше температура, тем выше скорость молекул и тем значительнее увеличивается объем. Чем больше скорость охлаждения или нагревания (разница температуры вещества и окружающей среды), тем быстрее будет виден результат.

Для закрепления, и дабы вернуть бутылке прежнюю форму, повторим процедуру с нагреванием.

Источники:

Тараканам вход закрыт: Известно, что сколько не воюй с тараканами, но если они есть у соседей, то обязательно прийдут снова к нам. Самый легкий путь для них — ветиляционная шахта. Снимите решетку с вентиляционного отверстия и на ее обратную сторону прикрепите (можно приклеить) капроновый чулок. Теперь никакая живность в Вашу квартиру не проникнет.

Простой и прочный древесный клей: Клей для дерева можно сделать самому. Достаточно взять немного творога и растворить его в нашатырном спирте. На 100гр. нашатырного спирта, 25гр. творога. Древесные поверхности нужно тщательно подогнать друг к другу, чтобы не было щелей, намазать и плотно скрепить струпцинами.

Что происходит с воздухом при нагревании и охлаждении

Провели такой опыт. Вставили в колбу пробку со стеклянной трубочкой.

Конец трубочки опустили в стакан с водой. Нагрели колбу, обхватив её руками. Скоро заметили, что из трубочки начали выходить пузырьки воздуха. Это произошло потому, что воздух при нагревании расширяется и не умещается в колбе.

Провели второй опыт. Положили на колбу, с которой ставили первый опыт, тряпку, смоченную холодной водой. Вода из стакана начала входить в трубку и подниматься по ней. Значит, воздух при охлаждении сжимается.

Чтобы лучше видеть, как поднимается по трубочке вода, её предварительно подкрасили.

Воздух, так же как и жидкие и твёрдые тела, расширяется при нагревании и сжимается при охлаждении.

Воздух – одинаковый на всем земном шаре. Он будет расширяться при нагревании и сжиматься при охлаждении в любой стране и городе, в любом поселке или деревне.

Для того, чтобы общаться с гражданами других стран, нужно выучить их язык. Например, это можно сделать, посещая различные школы изучения английского языка. Если ты знаешь иностранный язык, то можно спросить в интернете у англичан, или немцев, или французов – как ведет себя воздух в их стране. И, можно быть уверенным, что у них у всех воздух расширяется при нагревании и сжимается при охлаждении, независимо от местности, где они живут и языка, на котором они разговаривают.

     

У воздуха есть еще одно интересное свойство — он плохо проводит тепло. Многие растения, зимующие под снегом, не замерзают, потому что между холодными частицами снега много воздуха и снежный сугроб напоминает теплое одеяло, укрывающее стеб­ли и корни растений. Осенью белочка, заяц, волк, лиса и другие звери линяют. Зимний мех гуще и пышнее, чем летний. Между густыми волосками задерживается больше воздуха, и животным в заснеженном лесу не страшен мороз.

(Учитель записывает на доске.)

Воздух плохо проводит тепло.

Итак, какие свойства имеет воздух?

V. Физкультминутка

VI. Закрепление изученного материала Выполнение заданий в рабочей тетради

№ 1 (с. 18).

- Прочитайте задание. Рассмотрите рисунок и подпишите на схеме, какие газообразные вещества входят в состав воз­духа.(самопроверка со схемой в учебнике на с. 46.)

№2 (с. 19).

Прочитайте задание. Запишите свойства воздуха. (После выполнения задания проводится самопроверка с записями на доске.)

№3(с. 19).

- Прочитайте задание. Какие свойства воздуха нужно учиты­вать, чтобы правильно выполнить задание? (При нагревании воздух расширяется, при охлаждении сжимается.)

Как объяснить, что воздух при нагревании расширяется? Что происходит с частицами, из которых он состоит? (Ча­стицы начинают двигаться быстрее, и промежутки между ними увеличиваются.)

— Нарисуйте в первом прямоугольнике, как располагаются частицы воздуха при нагревании.

— Как объяснить, что воздух при охлаждении сжимается? Что происходит с частицами, из которых он состоит? (Частицы начинают двигаться медленнее, и промежутки между ними уменьшаются.)

Нарисуйте во втором прямоугольнике, как располагаются частицы воздуха при охлаждении.

№4 (с. 19).

Прочитайте задание. Какое свойство воздуха объясняет это явление? (Воздух плохо проводит тепло.)

VII. Рефлексия

Работа в группах

— Прочитайте первое задание в учебнике на с. 48. Попробуйте объяснить свойства воздуха.

— Прочитайте второе задание на с. 48. Выполните его.

— Что загрязняет воздух? (Промышленные предприятия, транс­порт.)

Беседа

Неподалеку от моего дома есть фабрика. Из моих окон видна высокая кирпичная труба. Из нее день и ночь валят черные густые клубы дыма, отчего горизонт вечно прячется за плотной серо­зной завесой. Порой так и кажется, будто это заядлый куриль­щик окуривает город своей неугасаемой гулливерской трубкой. Мы все кашляем, чихаем, кое-кого приходится даже укладывать в больницу. А «курильщику» хоть бы что: знай себе пых да пых, пых да пых.

Дети плачут: противная фабрика! Взрослые сердятся: немед­ленно закрыть!

А в ответ все слышат: как так «противная»?! Как так «за­крыть»?!

Наша фабрика товары для людей выпускает. А, к сожа­лению, дыма без огня не бывает. Загасим пламя топок — фабрика остановится, товаров не будет.

Как-то поутру проснулась я, глянула в окно — не дымит! Перестал великан курить, фабрика на месте, труба по-прежнему тор­чит, а дыма нет. Интересно, надолго ли? Однако вижу: и завтра не дымит, и послезавтра, и послепослезавтра… Неужто фабрику вовсе закрыли?

А дым куда же подевался? Сами ведь говорили, что дыма без огня не бывает.

Вскоре выяснилось: услышали наконец бесконечные наши жалобы - приладили к фабричной трубе дымоуловители, дымо­ловку, которая не позволяет частичкам сажи вылетать из трубы.

И вот что интересно. Казалось бы, никому не нужный и даже вредный дым заставили делать доброе дело. Его (вернее, сажу) теперь здесь бережно собирают и отправляют на завод пластмасс. Кто знает, быть может, этот мой фломастер как раз из той самой сажи, пойманной дымоловками. Словом, польза от дымоловок всем: и нам, горожанам (мы больше не болеем), и самой фабрике (она сажу продает, а не пускает, как прежде, на ветер), и покупа­телям пластмассовых изделий (в том числе фломастеров).

Назовите способы охраны чистоты воздуха. (Установки для очистки воздуха, электромобили.)

- Чтобы очистить воздух, люди сажают деревья. Почему? (Ра­стения поглощают углекислый газ, а выделяют кислород.)

Давайте внимательно рассмотрим листочек дерева. Нижняя поверхность листа покрыта прозрачной пленочкой и усеяна очень мелкими отверстиями. Их называют «устьица», хорошенько раз­глядеть их можно только в лупу. Они то открываются, то закрыва­ются, собирая углекислый газ. При свете солнца из воды, которая поднимается от корней по стеблям растений, и углекислого газа в зеленых листьях образуются сахар, крахмал, кислород.

Не зря растения называют «легкими планеты».

Какой чудесный воздух в лесу! В нем много кислорода и полез­ных веществ. Ведь деревья выделяют особые летучие вещества - фитонциды, которые убивают бактерии. Смолистые запахи ели и сосны, аромат березы, дуба, лиственницы очень полезны для человека. А вот в городах воздух совсем другой. Он пахнет бензи­ном, выхлопными газами, ведь в городах много машин, работают фабрики, заводы, которые тоже загрязняют воздух. Дышать таким воздухом человеку вредно. Чтобы очистить воздух, мы сажаем де­ревья, кустарники: липы, тополя, сирень.

⇐ Предыдущая12345678910Следующая ⇒

Приборы, в которых происходит обмен тепла, называются теплообменниками .

Простейший тип теплообменника можно изготовить, поместив одну цилиндрическую трубку в другую. Если по наружной трубке снизу пропустить холодный воздух, а навстречу ему по внутренней - теплый, то последний охладится, отдавая свое тепло холодному воздуху, идущему по наружной трубке. В таком теплообменнике даже при низкой температуре холодного воздуха нельзя достичь хорошего охлаждения поступающего сверху газа.

Имеются более сложные конструкции теплообменников, в которых внутренняя трубка сделана в виде спирали или заменена большим количеством трубок малого диаметра. Это увеличивает площадь соприкосновения трубок с проходящим мимо них холодным воздухом.

Теплообменники изготовляются преимущественно из красной меди. Она обладает хорошей теплопроводностью.

Снаружи теплообменники покрываются теплоизоляционным материалом, который предохраняет их от внешнего тепла. В хорошем теплообменнике можно охладить воздух до очень низких температур, но для этого нужен еще более холодный воздух.

Откуда его взять?

Если быстро сжать газ, то он нагреется; если же его быстро расширить, то он охладится.

Пропустите сжатый воздух через пористую пробку, вставленную в середину небольшой трубки. Нажмите на поршень. Левая сторона трубки, где воздух сжимается, нагреется. Одновременно заметно охладится правая часть трубки, куда поступает сжатый воздух, расширяясь при выходе через пробку.

Ученые-физики объясняют нагревание газа при его сжатии тем, что при уменьшении объема сжатого газа молекулы настолько близко подходят друг к другу, что между ними начинают действовать силы притяжения, молекулы газа еще больше сближаются - совершается работа, которая как бы приводит к дополнительному сжатию. Происходит выделение тепла, температура газа повышается.

При быстром расширении сжатого газа происходит увеличение его объема. Молекулы газа стремятся отойти друг от друга, но силы притяжения препятствуют этому. На преодоление сил притяжения затрачивается работа, расходуется часть тепла, и газ охлаждается.

Величина, на которую понизится температура газа при расширении, зависит от начального и конечного давления. В практике принято считать, что при понижении давления на 1 атмосферу температура газа понижается.

Если в специальной машине, называемой компрессором, сжать некоторый объем воздуха до 200 атмосфер, затем пропустить его через специальный кран - расширительный вентиль - и дать ему быстро расшириться до первоначального объема, температура его понизится примерно на 50°. Если температура сжатого воздуха до его прохождения через расширительный или дроссельный вентиль была 10°, то после его расширения она станет -40°. Чем ниже температура сжатого воздуха до его расширения, тем ниже она будет после дросселирования, то есть после пропускания через узкую щель дроссельного вентиля. Постепенно понижая температуру сжатого воздуха, можно достичь температуры, при которой он начнет сжижаться.

Но прежде чем приступить к получению жидкого воздуха, его нужно очистить.

В воздухе обычно содержится много пыли - мелких твердых частиц песка и угля. В среднем в кубическом метре воздуха содержится до 0,01 грамма примесей. Механические примеси, попадая между трущимися частями компрессора, образуют царапины и приводят к преждевременному износу машины. Поэтому воздух нужно освободить от пыли.

Для очистки воздуха используют специальные масляные фильтры, которые устанавливают на всасывающей трубе компрессора.

Образование тумана при охлаждении влажного воздуха.

Кроме механических загрязнений, воздух содержит влагу, углекислый газ и другие газообразные примеси.

Количество влаги в воздухе зависит от его температуры.

Наибольшее количество влаги в 1 кубическом метре воздуха при температуре -30° составляет около 0,1 грамма, а при температуре 30° - примерно 30 граммов.

При небольшом охлаждении воздуха пары воды конденсируются и превращаются в туман.

Налейте в банку немного воды и закройте ее пробкой, в которую вставлена трубка. Наденьте на трубку резиновую грушу и сожмите ее так, чтобы весь воздух из груши перешел в банку. В банке создастся давление. Если после некоторой выдержки быстро ослабить грушу, воздух з банке расширится и охладится - в банке появится туман. Это значит, что водяные пары, которые находились в банке вместе с воздухом, сконденсировались. Мельчайшие капельки воды равномерно распределились по всему объему.

При более низкой температуре влага вымораживается и образуется иней, который может осесть в виде льда на стенках аппаратуры.

Если в теплообменник или расширительный вентиль пустить воздух, содержащий влагу, на их стенках образуется сначала тонкий, а затем более толстый слой льда. Чтобы лед не закупорил трубки, воздух, прежде чем приступить к его охлаждению, нужно осушить.

Воздух можно осушить, пропуская его через пористые вещества, способные поглощать влагу. Такими веществами являются силикагель и специально обработанный - активированный - глинозем. Когда эти вещества поглотят столько влаги, что перестанут осушать воздух, их прокаливают и снова используют для просушки.

Влагу из воздуха можно также поглотить каустической содой или прокаленным хлористым кальцием. Эти вещества загружают в специальные баллоны, через которые пропускают воздух. Пройдя через них, воздух становится совершенно сухим.

На крупных установках, вырабатывающих кислород, влагу вымораживают в специальных ловушках - вымораживателях, где поддерживается температура -40-50°. Когда в одной ловушке набирается много льда, воздух переключают на другую ловушку, а первую нагревают. Лед тает, и воду из нее сливают через специальный кран.

Очистив воздух от пыли и осушив его, нельзя еще приступить к ожижению.

В воздухе имеется углекислый газ. При температуре около -80° этот газ превращается в снегообразную массу, которая при дальнейшем охлаждении образует твердое вещество, похожее на лед.

Если кусочек такого льда положить на чистый лист белой бумаги, лед постепенно начнет уменьшаться в объеме, не оставляя после себя никаких следов. Вот он окончательно исчез, а бумага по прежнему осталась такой же чистой и сухой. Сухой лед - это твердая углекислота. Он широко применяется в пищевой промышленности.

Для получения жидкого воздуха нельзя обойтись без очистки газообразного воздуха от углекислого газа. Иначе через некоторое время в холодильной установке накопится большое количество сухого льда, который может вывести ее из строя.

Как же очистить воздух от углекислого газа?

Раствор щелочи помещают в колонку, через которую пропускают воздух. Углекислый газ, находящийся в воздухе, соединяется с едким натром и образует соль. Выходящий из колонки воздух практически не содержит углекислоты.

Очистив газообразный воздух от всех примесей, которые могут помешать его сжижению, можно приступить к получению жидкого воздуха.

Для этого необходимо соединить между собой компрессор, простой холодильник, теплообменник и расширительный вентиль по схеме холодильного цикла с дросселированием.

Предварительно очищенный воздух направляют в компрессор и сжимают его до 200 атмосфер; так как воздух нагреется, его следует охладить, пропустив через простой холодильник с проточной холодной водой. Сжатый газ, проходя в холодильнике по внутренней трубке, отдаст свое тепло воде, которая омывает трубку снаружи. Из холодильника газ выйдет более холодным, чем из компрессора: его температура будет приблизительно 10°.

Сжатый воздух из холодильника направляют в теплообменник. Но так как теплообменник еще ничем не охлаждается, газ пройдет через него без изменения температуры и, попав в дроссельный вентиль, расширится в нем. При расширении газ охладится и перейдет в ожижитель, из ожижителя - обратно в теплообменник. С этого момента начинается работа теплообменника.

Воздух, идущий из ожижителя, будет охлаждать сжатый воздух, поступающий из компрессора. Температура сжатого воздуха после прохождения через расширительный вентиль понизится еще больше и, уходя через теплообменник в атмосферу, еще сильнее охладит свежие порции поступающего сжатого воздуха.

Итак, ежеминутно автоматически все больше и больше понижается температура воздуха, входящего в расширительный вентиль. Наконец наступает момент, когда воздух охладится настолько, что часть его ожижится.

Жидкий воздух собирается в ожижителе, откуда его сливают через кран.

Неожиженная часть воздуха поступает в теплообменник с температурой около -190°, а выходит из него с температурой, близкой к комнатной. Идет непрерывное ожижение небольшой части воздуха, проходящего через холодильную установку.

В описанном цикле только 5 процентов пропускаемого воздуха переходит в жидкое состояние, большая часть его не сжижается и уходит обратно в атмосферу.

Это объясняется тем, что цикл с дросселированием обладает малой производительностью холода, то есть расход энергии на сжатие газа до высокого давления велик, а снижение температуры при дроссельном расширении газа мало. Холодильный цикл прост по своему устройству, но малоэкономичен.

Ученые стали настойчиво искать более экономичных способов получения жидкого воздуха. Было установлено, что если сжатый воздух расширить в цилиндре поршневого двигателя или на лопатках ротора - вращающейся части воздушной турбины - и заставить его при расширении производить внешнюю работу, то воздух охладится значительно сильнее, чем при расширении в дроссельном вентиле, где производится только внутренняя работа, которая идет на преодоление сил взаимного притяжения молекул.

Машины, в которых происходит расширение сжатого газа с получением внешней работы, называются детандерами.

Охлаждение газа в детандере тем больше, чем больше он производит работы при своем расширении. Для охлаждения газа в детандере не требуется высокого давления.

Достаточно давления 50-60 атмосфер. Температура газа при его наибольшем расширении понизится до -120- 125°. Таким образом, при снижении давления газа в детандере на 1 атмосферу температура понижается приблизительно на 2° - в 8 раз больше, чем при дросселировании.

Производительность холодильного цикла с детандером в 2-3 раза выше производительности цикла с дросселированием. Из всего воздуха, проходящего через такую систему, ожижается не 5, а 10-15 процентов. Затрата энергии на сжатие газа в холодильном цикле среднего давления с детандером примерно в 3 раза меньше, чем в холодильной установке с дросселем.

В установке с детандером воздух, сжатый до 40-50 атмосфер, поступает сначала в холодильник, где он охлаждается водопроводной водой. Из холодильника весь воздух поступает в первый теплообменник, где он еще больше охлаждается.

При выходе из первого теплообменника сжатый воздух пускают по двум направлениям. Большая часть газа отводится в детандер, где он расширяется до 1 атмосферы и сильно охлаждается.

Охлажденный в детандере воздух направляется через теплообменники в атмосферу. По пути он отбирает тепло от идущего навстречу воздуха, поступающего из компрессора.

Оставшаяся часть сжатого воздуха охлаждается во втором теплообменнике и поступает в расширительный вентиль. При расширении воздух еще больше охлаждается и, достигнув температуры сжижения, частично ожижается. Жидкий воздух собирается в ожижителе. Неожиженная, холодная часть воздуха направляется через теплообменники в атмосферу. По мере накопления жидкий воздух сливают.

Сравнительно недавно в одном из институтов Академии наук СССР был разработан способ получения жидкого воздуха в установках с низким давлением.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вконтакте

Одноклассники

Вода и жидкие тела

При нагревании наблюдается значительное расширение жидких тел, в отличие от твердых тел. Ацетон обладает довольно большим температурным расширением. А для воды и ртути характерно наименьшее температурное расширение.

Всем известно о том, что каждое охлажденное тело будет сжиматься. Вода считается исключением (аномалия воды). Охлаждение воды до +4°С приводит к уменьшению объема, однако, продолжив дальнейшее охлаждение от +4°С до О°С объем снова увеличится.

Поэтому вода при температуре +4°С будет обладать наибольшей плотностью. Это объясняет то, почему лед плавает в воде, а замерзшая водопроводная труба лопается.

Газообразные тела

Нагрев воздуха в каком-либо объеме, приведет к его расширению.

Плотность нагретого воздуха по отношению к ненагретому — уменьшается, поэтому горячий воздух поднимается кверху.

Газ при нагревании будет расширяться значительно больше, чем жидкость. Газ, который помещен в замкнутый сосуд, не будет расширяться при нагревании. Увеличенное давление газа может вызвать разрыв сосуда.

Больше интересных статей:


Воде присущи поразительные свойства, которые сильно отличают ее от прочих жидкостей. Но это и хорошо, иначе, обладай вода «обычными» свойствами, планета Земля была бы абсолютно другой.

Для подавляющего большинства веществ характерно при нагревании расширяться. Что довольно легко объяснить с позиции механической теории теплоты. Согласно ей, при нагревании атомы и молекулы вещества начинают двигаться быстрее. В твердых телах колебания атомов достигают большей амплитуды, и им необходимо больше свободного пространства. Как результат – происходит расширение тела.

Тот же самый процесс происходит и с жидкостями, и с газами. То есть, за счет повышения температуры увеличивается скорость теплового движения свободных молекул, и тело расширяется. При охлаждении же, соответственно, происходит сжатие тела. Это свойственно практически для всех веществ. За исключением воды.

При охлаждении в интервале от 0 до 4оС вода расширяется. И сжимается – при нагревании. Когда отметка температуры воды достигает 4оС, в этот момент вода имеет максимальную плотность, которая равна 1000 кг/м3. Если температура ниже или выше этой отметки, то плотность всегда немного меньше.

Благодаря этому свойству при понижении температуры воздуха осенью и зимой в глубоких водоемах происходит интересный процесс. Когда вода охлаждается, она опускается ниже, на дно, однако лишь до того момента, пока ее температура не станет +4оС. Именно по этой причине в больших водоемах более холодная вода находится ближе к поверхности, а более теплая – опускается на дно. Так что когда зимой поверхность воды замерзает, более глубокие слои продолжают сохранять температуру 4оС. Благодаря этому моменту рыба может спокойно зимовать в глубинах покрывшихся льдом водоемов.

Влияние расширения воды на климат

Исключительные свойства воды при нагревании серьезным образом влияют на климат Земли, поскольку около 79% поверхности нашей планеты покрыто водой. За счет солнечных лучей происходит нагревание верхних слоев, которые затем опускаются ниже, а на их месте оказываются холодные слои. Те тоже, в свою очередь, постепенно нагреваются и опускаются ближе ко дну.

Таким образом, слои воды непрерывно меняются, что приводит к равномерному прогреванию, пока не достигается температура, соответствующая максимальной плотности. Затем, нагреваясь, верхние слои становятся менее плотными и уже не опускаются вниз, а остаются наверху и просто постепенно становятся теплее. За счет этого процесса огромные толщи воды довольно легко прогреваются солнечными лучами.

Объем тела напрямую связан с межатомным или межмолекулярным расстоянием вещества. Соответственно, увеличение объема обусловлено увеличением данных расстояний за счет различных факторов. Одним из таких факторов является нагрев.

Вам понадобится

  • Учебник по физике, лист бумаги, карандаш.

Инструкция

Прочитайте в учебнике по , как устроены вещества, имеющие различное агрегатное состояние. Как известно, одно агрегатное состояние вещества отличается от другого явными внешними различиями, например, такими, как твердость, текучесть, масса или объем. Если же взглянуть внутрь каждого из видов веществ, можно заметить, что разница выражается в межатомном или межмолекулярном расстояниях.

Обратите внимание, что масса определенного объема газа всегда меньше массы такого же , а та, в свою очередь, всегда ниже массы твердого тела. Это говорит о том, что количество частиц вещества, умещающихся на единичный объем, у газов гораздо меньше, чем у жидкостей, и еще меньше, чем у твердых тел. Иначе, можно сказать, что концентрация частиц более твердых веществ всегда больше, чем у менее твердых, в частности, у жидких или газообразных. Значит, твердые тела имеют в своей структуре более плотную упаковку атомов, меньшее расстояние между частицами, чем, скажем, у жидкостей или газов.

Вспомните, что происходит с металлами, когда их нагревают. Они расплавляются и приобретают свойство текучести. То есть металлы становятся жидкостями. Если провести эксперимент, то можно заметить, что при расплавлении объем металлического вещества увеличивается. Вспомните также, что происходит с водой при нагревании и последующем кипении. Вода превращается в пар, представляющий собой газообразное состояние воды. Известно, что объем пара гораздо выше объема первоначальной жидкости. Таким образом, при нагревании тел межатомное или межмолекулярное расстояние увеличивается, что подтверждается опытами.