Денежная удача

Температура воды и ледовые явления. Жизнь подо льдом Температура воды зимой подо льдом

Русская народная традиция - купаться в проруби в Крещенье, 19 января, привлекает все больше и больше людей. В этом году в Петербурге были организованы 19 прорубей, называемых «купель» или «иордань». Проруби были хорошо оснащены деревянными мостками, везде дежурили спасатели. И интересно, что, как правило, купающиеся люди говорили журналистам, что они очень довольны, вода теплая. Я сама не купалась зимой, но знаю, что вода в Неве действительно, по данным измерений была + 4 + 5 °С, что значительно теплее температуры воздуха - 8 °С.

Тот факт, что температура воды подо льдом на глубине в озерах и реках выше нуля на 4 градуса известен многим, но, как показывают обсуждения на некоторых форумах, не все понимают причину этого явления. Иногда повышение температуры связывают с давлением толстого слоя льда над водой и изменением в связи с этим температуры замерзания воды. Но большинство людей, успешно изучавших физику в школе, уверенно скажут, что температура воды на глубине связана с известным физическим явлением - изменением плотности воды с температурой. При температуре +4°С пресная вода приобретает свою наибольшую плотность .

При температурах вблизи 0 °С вода становится менее плотной и более легкой. Поэтому при охлаждении воды в водоёме до +4 °С прекращается конвекционное перемешивание воды, дальнейшее её охлаждение происходит только за счет теплопроводности (а она у воды не очень высокая) и процессы охлаждения воды резко замедляются. Даже в лютые морозы, в глубокой реке под толстым слоем льда и слоем холодной воды всегда будет вода с температурой +4 °С. До дна промерзают лишь мелкие пруды и озера.

Мы решили разобраться, почему при охлаждении вода ведет себя так странно. Оказалось, что исчерпывающее объяснение этому явлению еще не найдено. Существующие гипотезы не нашли пока экспериментального подтверждения. Надо сказать, что вода — не единственное вещество, имеющее свойство расширяться при охлаждении. Подобное поведение характерно также для висмута, галлия, кремния и сурьмы. Однако именно вода вызывает наибольший интерес, поскольку является веществом, очень важным для жизнедеятельности человека и всего растительного и животного мира.

Одна из теорий - существование в воде двух типов наноструктур высокой и низкой плотности, которые изменяются с температурой и порождают аномальное изменение плотности. Ученые, изучающие процессы переохлаждения расплавов, выдвигают следующее объяснение. При охлаждении жидкости ниже температуры плавления внутренняя энергия системы уменьшается, подвижность молекул снижается. В то же самое время усиливается роль межмолекулярных связей, за счет которых могут формироваться разнообразные надмолекулярные частицы. Опыты ученых с переохлажденным жидким о_терфенилом позволили предположить, что в переохлажденной жидкости со временем может образовываться динамическая «сетка» из более плотно упакованных молекул. Эта сетка разделяется на ячейки (области). Молекулярные переупаковки внутри ячейки задают скорость вращения молекул в ней, а более медленная перестройка самой сетки приводит к изменению этой скорости во времени. Что-то подобное может происходить и в воде.

В 2009 г. японский физик Масакадзу Мацумото, используя компьютерное моделирование, выдвинул свою теорию изменения плотности воды и опубликовал ее в журнале Physical Review Letters (Why Does Water Expand When It Cools?) («Почему вода при охлаждении расширяется?»). Как известно, в жидкой форме молекулы воды посредством водородной связи объединяются в группы (H 2 O) x , где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют тетраэдральный угол, равный 109,47 градуса.

Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, препятствуют такому объединению, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами. В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

На рисунке шесть типичных витритов, образующих внутреннюю структуру воды. Шарики соответствуют молекулам воды, отрезки между шариками обозначают водородные связи. Рис. из статьи Masakazu Matsumoto, Akinori Baba, and Iwao Ohminea.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами, некоторые витриты принимают структурно неравновесные конфигурации, которые позволяют всей системе в целом получить наименьшее значение энергии среди возможных. Такие назвали фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом. Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры, по мнению ученых, вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты,преобладает, что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Это объяснение основано пока только на компьютерном моделировании. Экспериментально его очень трудно подтвердить. Исследование интересных и необычных свойств воды продолжается.

Источники

О.В. Александрова, М.В. Марченкова, Е.А. Покинтелица «Анализ термических эффектов, характеризующих кристаллизацию переохлажденных расплавов» (Донбасская национальная академия строительства и архитектуры)

Ю. Ерин. Предложена новая теория, объясняющая, почему вода при нагревании от 0 до 4°C сжимается (

Есть три основных способа зимовки карпов: в отапливаемом помещении, сооружение отапливаемой крытой конструкции и в открытом водоёме, часто подо льдом. Последний способ может показаться наиболее простым и не требующим подготовки, но понимание происходящих подо льдом процессов поможет верно провести зимовку.

Грамотное проведение зимовки поможет рыбам быстро восстановиться ранней весной, после самого опасного сезона года.

Одна из немногих вещей, которую мы не можем контролировать в открытом водоёме, — температуру воды. Разумеется, если нет дорогостоящей системы обогрева. Однако природа позаботилась об этом и подготовила механизмы, приспосабливающие карпов к холодной среде. Работа человека заключается в том, чтобы создать для рыбы максимально подходящие условия. Главным образом они сводятся к тому, чтобы повторить естественные процессы в природных водоёмах. Важный фактор холодной зимовки — замерзание водоёма.

Зимой лёд служит барьером между водой и окружающей средой: резкими колебаниями температур, переохлаждением воды, холодным ветром и кислотностью снега. Бороться со льдом во время зимы — ошибка, доставляющая беспокойство рыбам. Лёд можно удалять весной во время оттепели, чтобы вода прогревалась быстрее. Снег на люду также полезен. Просто забудьте о водорослях или растениях, которые перестанут получать солнечный свет и производить кислород — за насыщение декоративного водоёма должен отвечать аэратор. Важно только чтобы растения сами не оказались во льду. Действительно, не видеть любимую рыбу несколько недель или даже два-три месяца в году может быть нелегко. Но для кои это естественный и безопасный способ зимовки. Рассмотрим происходящие в водоёме процессы после охлаждения воды.

Вода состоит из двух атомов водорода и одного атома кислорода (H2O). Между молекулами воды есть связи, за счёт которых она растекается по поверхности, а не рассыпается как ртуть. Во время испарения водородные связи между молекулами рвутся и образует пар. При переходе воды в твёрдое состояние молекулы упорядочиваются, образуя кристаллическую решётку.

При снижении температуры воды до слабо отрицательного значения −0,15°C вода меняет агрегатное состояние из жидкостного на кристаллическое. Любая вода не замерзает одинаково — на процесс влияют такие факторы, как химический состав и давление. Дистиллированная вода не замерзает при слабо отрицательной температуре потому, что в ней нет центров кристаллизации — микроскопических взвешенных частиц, вокруг которых формируются кристаллы. При 0 °C и отсутствии дополнительной тепловой энергии (например тёплый воздух) вода сохраняет агрегатное состояние. В таком случае одинаковый объём льда будет плавать в жидкости, а система сохранит равновесие. Значение 0 в шкале Цельсия принято как температура фазы перехода воды из одного состояния в другое. В открытом водоёме постоянно происходят изменения, поскольку идеальных температурных условий 0 °C здесь не бывает.

Что влияет на физические процессы в водоёме при отрицательной температуре воздуха?

Для появления льда достаточно, чтобы поверхностная плёнка охладилась на десятые доли градуса. Обязательная механическая взвесь в любом водоёме с рыбой становится одной из точек замерзания, вокруг которой формируется лёд.

Мелкие водоёмы на поверхности земли промерзают с двух сторон: сверху, из-за холодного воздуха и снизу, когда промёрзнет грунт. Глубокие стоячие заполненные водоёмы, дно которых ниже глубины промерзания, могут промёрзнуть сверху до глубины промерзания грунта. Быстрые реки Восточной Сибири промерзают от основания — из-за постоянного перемешивания воды лёд не успевает образовываться на поверхности и закрепляется на дне. Поверх гальки и валунов формируются быстро растущие кристаллы, иногда до 1 м высотой за сутки.

После образования поверхностной плёнки от краёв водоёма к центру лёд растет вниз, за счет более интенсивного роста некоторых кристаллов. Лёд имеет меньшую плотность и теплопроводность, чем жидкость. Это полезное для рыб свойство.

Термоклин — это слой воды, температура которого резко отличается от температуры других слоёв. Например, когда летом нагревается поверхностный слой, а на дне вода остаётся холодной. Зимой также есть термоклин.

При охлаждении воды увеличивается её плотность. При температуре воды 4 °C у неё максимальная плотность и она опускается ниже более холодной воды. В озёрах и глубоких прудах тёплая вода на дне создаёт зону, которая позволяет пережить рыбам самые суровые зимы. Для формирования такой области необходима такая глубина и объём воды, который не позволяет ей перемешиваться охлаждаясь. Говоря о зимовке, слои воды обычно вспоминают в связи с работой насосов, ведь они могут их перемешивать и охлаждать водоём.

В обычном декоративном водоёме глубиной 1-1,5 метра зимнего температурного расслаивания воды может не происходить: для её перемешивания сверху вниз достаточно ветра. Мелкий замкнутый водоём, например без притока тёплой грунтовой воды, продолжает охлаждается со стороны льда и грунта. Это похоже на то, как замерзает в морозильнике кубик воды, — со всех сторон сразу. Если глубина водоёма равна глубине промерзания, весь его объём превратится в лёд.

Кои зимой находятся на дне, прежде всего следуя природным инстинктам, а не опускаясь к тёплой воде. В водоёме глубиной 50 см они всё равно будут опускаться на дно. Также они становятся менее подвижными и экономят силы.

Естественное утепление водоёма

Форма водоёма и несложные конструкции естественным образом защищают водоём от переохлаждения.

Перед строительством пруда нужно узнать глубину промерзания почвы в вашей климатической зоне — от этого зависит минимальная безопасная для рыб глубина водоёма. Глубину промерзания почвы в вашем поясе должны знать питомники садовых растений и строители, специализирующиеся на фундаментах. Знать глубину промерзания нужно потому, что на этой линии грунта температура земли может быть около 0 °C. Под ней земля остаётся температурой около 1,5 °C, зачастую выше. Если вы сами измеряете температуру промерзания почвы, найдите отметку, где она не опускается ниже 4-4,5 °C. Эта глубина дополнительно утеплит водоём.

Глубина водоёма должна быть минимум на 1 м больше глубины промерзания. В особенно холодных зонах можно утеплить грунт на 1,5-2 м вокруг водоёма. Реальная глубина промерзания часто отличается от номинального значения. Если конструкция расположена рядом с отапливаемым зданием, его фундамент будет подогревать верхнюю часть грунта. Лёд и снег — естественные теплоизоляторы, которые препятствуют промерзанию грунта вглубь. Реальная глубина промерзания грунта может быть меньше номинальной на 20-40%. Учитывайте, что стенки водоёма — дополнительный утеплитель, который поддерживает температуру поверхности дна водоёма выше 1,5 °C. Также защищает водоём укрытый снегом кустарник вокруг него.

Для зимовки рыб в надземном водоёме учитывайте, что отсутствие естественных утеплителей приводит к большему охлаждению. Надземные бассейны в холодных регионах лучше использовать в тёплое время года или в качестве ёмкостей в закрытых помещениях.

Для защиты гидроизоляционной плёнки от повреждения льдом на поверхности можно оставлять наполовину заполненные водой пластиковые бутылки. На 1 кв. м. нужна приблизительно одна бутылка, которая уменьшает нагрузку на края. (?)

Также чем выше солёность, тем ниже температура замерзания. Оставляя на зиму водоём с солоноватой воды вы рискуете сделать её слишком холодной для карпов.

Биологическая фильтрация

Универсального совета, отключать биофильтр зимой или нет, дать нельзя, поскольку зима — слишком общее в данном случае понятие. Нитрификацию в водоёмах осуществляют одновременно десятки видов бактерий, главным образом Nitrosomonas и Nitrobacter, оптимальная температура для развития которых 15-35 °C. Скорость нитрификации растёт с повышением температуры и снижается в воде теплее +35 °C в связи с уменьшением растворённого в воде кислорода. Хотя некоторые штаммы Nitrosomonaseuropea могут развиваться при +4 °C, в целом нитрификация замедляется при +9 °C и обычно прекращается при +6 °C.

Кроме температуры, на интенсивность нитрификации влияет pH, кислотность, концентрация аммиака, количество бактерий, скорость течения воды, концентрация кислорода и углекислого газа и многое другое. Используя эти факторы, специально созданные для холодного климата промышленные системы продолжают устранять аммиак при +0,2-0,5 °C. При +5 °C может продолжаться денитрификация. Аммиак рыбы выделяют постоянно, вне зависимости от того питается рыба или нет. Но при отсутствии кормления в очищенном от органических остатков водоёме, в котором нет перенаселения уровень аммиака не должен перейти критическую отметку.

О кормлении карпов кои зимой читайте .

Инфекции в холодной воде: риск сохраняется

Карп — теплолюбивая рыба. С понижением температуры уменьшается интенсивность обмена веществ и активность иммунной системы. Некоторые микроорганизмы активны в холодной воде и представляют опасность для рыб.

Весенняя виремия карпа — вирусное заболевание карповых, в наиболее острой форме протекающее при температуре 11-17 °C. При 5-10 °C от инфекции может погибнуть 100% больных рыб. Продолжительная зимовка при низкой температуре снижает устойчивость рыб к заболеванию. Возбудитель заболевания проникает в поверхностные слои кровеносных сосудов и вызывает отток элементов крови в окружающие ткани и полости. Опасность весенней веремии заключается также в том, что она может становиться основой для других распространённых бактериальных заболеваний — аэромоноза и псевдомоноза.

Аэромоноз и псевдомоноз. Заболевания со схожими признаками вызывают бактерии двух родов. Просторечное название «краснуха» появилась в силу характерных признаков — приподнятой чешуи и точечных кровоподтёков на теле и глазных яблоках. Неполноценное или недостаточное кормление рыб осенью, слабая упитанность, травмы, — и рыбе становится труднее сопротивляться патогенным бактериям. Перенаселение и плохая очистка водоёма осенью также способствуют их развитию. Бактерии рода Aeromonas всё ещё активны при 5 °C, и могут проникать в организм через ослабленный зимним голоданием кишечник. Вспышки вызванных бактериями Pseudomonas заболеваний приходятся обычно на вторую половину зимовки — с января по март. Бактерии Pseudomonas могут развиваться при низких температурах, до 2 °C.

Аммиак и нитриты

Даже если оставить биофильтр включённым зимой, в холодной воде он становится неэффективным. Но рыба выделяет аммиак круглый год, и хотя весной его уровень проверять принято, ведь биофильтр ещё не запущен, зимой аммиак проверяют редко. Но почему, ведь зимой биофильтр не работает вообще?

Под общим названием «аммиак» понимают два вещества — ионизированную форму аммоний (NH4) и свободный аммиак (NH3). Большинство тестов показывают общее содержание аммиака и не разделяют их на формы. Наиболее опасен свободный аммиак — именно его имеют в виду говоря об аммиачных отравлениях. Эти вещества переходят одно в другое — присоединяя ион водорода аммиак превращается аммоний, а отдавая его возвращается в первоначальную форму. Преобладание в воде той или другой формы определяет одновременно pH и температура воды. Опасность свободного аммиака возникает при концентрации 0,05 мг/л, поэтому определить его концентрацию исходя из обычного теста совсем нелегко.

При снижении температуры воды концентрация NH3 уменьшается — см. табл. Зная pH воды и глядя на таблицу, вы можете увидеть, при какой температуре можно начинать проверять аммиак.

Таблица: Мольная доля азота аммиака в общем содержании аммонийного азота в воде в зависимости от pH и температуры при минерализации 0,5 г/дм³

Нитриты менее опасны, чем аммиак. Также, при слабой активности нитрифицирующих бактерий и замедленном метаболизме рыб, шансы отравления нитритами небольшие. Зимой можно подменивать воду, особенно если вас беспокоит уровень нитритов.

Гипотермия

Как и другие животные, карпы страдают от гипотермии. Гипотермия, или переохлаждение — это снижение температуры организма до критической отметки, ниже чем нужно для его нормального функционирования. На опасность гипотермии одновременно влияет температура охлаждения, его скорость и продолжительность. Устойчивость рыбы к переохлаждению зависит от её состояния — возраста, наличия жировых отложений. Предельно низкая температура, при которой возможно восстановление функций организма называется «биологическим нулём». Это ещё обратимый процесс.

Низкие температуры приводят к замедлению дыхания, частоты сердечных сокращений, падению интенсивности обмена веществ, кровяного давления. Затем угнетается работа нервной системы — наступает холодовый наркоз. В крови уменьшается содержание сахара. Особенно чувствительна к падению сахара нервная система, в которой отсутствуют запасы гликогена, и со временем в нервных клетках возникают необратимые изменения.

При длительной гипотермии начинается аутолиз (саморастворение клеток), приводящий к смерти сначала отдельных клеток и затем всего организма. Главной причиной смерти рыб при переохлаждении считается тканевая гипоксия (кислородное голодание) и необратимые изменения в нервной системе.

В рыбоводческих хозяйствах адаптированные к холодному климату карпы нормально зимуют при температуре до 0,5 °C. Для неприспособленных к суровому климату декоративных кои, часто выращиваемых в закрытых бассейнах, такая температура может стать смертельной.

Спячка или оцепенение

Оптимальная температура для карпа 15-30 °C. Это сильная рыба, которая приспособилась к холодной зимовке, хотя она ей и не нужна. В холодной воде карпы находятся у дна и мало двигаются. Это естественный защитный механизм, который помогает им сохранять энергию для долгой зимовки. С понижением температуры воды замедляется обмен веществ и, как следствие, — потребность в питании. Поскольку в сезон роста карп постоянно передвигается именно в поисках пищи, всю зиму он может оставаться почти на одном месте. Снижение интенсивности обмена веществ и другие адаптации для зимовки происходят не за один день — именно поэтому так важны в водоёме постепенные изменения параметров воды. Рыба может выдерживать значительные изменения окружающей среды, если достаточно времени приспособиться.

Когда вода охлаждается до 7 °C, кои становятся значительно менее активными. С дальнейшим снижением температуры они впадают в оцепенение, или торпор. Оцепенение, в отличие от настоящей зимней спячки, продолжается от нескольких до десятков часов. При этом рыба воспринимает внешние раздражители и может на них реагировать. Поскольку нервная деятельность в оцепенении не прекращается, рыба может быть и физически активной, например, медленно перемещаясь вдоль дна. С повышением температуры воды рыба может продолжить питаться, хоть и не так активно, как летом.

Поскольку обмен веществ в таком состоянии замедляется, важно не допускать стрессовых ситуаций, которые в нормальном состоянии рыба преодолевает с помощью гормонов. Адреналин позволяет рыбе мгновенно уйти с одного места, прочь от опасности. В холодной воде реакции рыбы заторможены и стресс становится особенно опасным. Вылов и транспортировку рыбы зимой, осмотр нужно проводить особенно аккуратно.

ПРУД ЗИМОЙ

Дата: 12.1.10 | Раздел: Водоемы

С наступлением холодов все в саду замирает. Однако следует помнить, что в замерзших прудах будут зимовать рыбки и другая живность. Нужно основательно подготовить пруд к зиме, это особенно важно для водоемов глубиной около 1 метра.

Когда температура воды опускается до 8 °С, жив­ность, обитающая в пруду, переходит в состоя­ние глубокого сна. В зависимости от темпера­туры воды нужно постепенно снижать порцию корма. В этот период у рыб притупляются вкус и обоняние, они реагируют только на движение воды, перепады давления и прикосновения. Они опускаются на дно, выбирая самые глубо­кие и теплые места водоема - там они прово­дят всю зиму. На глубине 1 метра температура воды примерно 5 °С - этого вполне достаточно, чтобы рыбки смогли перезимовать. Однако в местах, где скапливаются живые организмы, очень часто не хватает кислорода. Если пруд долгое время находится подо льдом, то газы не выходят наружу и рыбы могут погибнуть.

Перед первыми заморозками

Об условиях зимовки рыб в водоеме следует подумать за pa нее до наступления первых замо­розков. Осенью совсем не обязательно срезать тростник и камыш. Благодаря колыхающимся от ветра растениям вода в том месте, где они растут, замерзнет в самый последний момент.

Чтобы не весь пруд покрылся льдом, стоит выпустить на воду так называемый пенопласто­вый поплавок(продается в специализированных садовых магазинах). Эта конструкция состоит из кольца и крышки (крышку следует убрать, если необходимо открыть лунку во льду). Вода под кольцом не замерзнет, если нижняя часть будет погружена на глубину не менее 10 см. В коль­це находятся специальные камеры, в которые можно насыпать песок или камни. Когда тем­пература опустится до -8 °С, лунка под крыш­кой замерзает. Тогда в пенопластовый поплавок необходимо вмонтировать специальный нагре­ватель или компрессор. Также в поплавок можно закладывать пучки рубленого тростника, благо­даря которому вода в лунках не замерзнет и воз­обновится процесс газообмена.

На ледяной глади

Во время сильных морозов льдом покроется вся поверхность пруда. В нескольких местах необходимо сделать лунки. Для сверления лунок в толстом льду лучше всего подойдет коло­ворот, или ледобур, который вырезает отверстия диаметром около 1 5 см даже в самом тол­стом льду. Чем больше лунка, тем лучше. Чтобы проруби не замерзали, в лунки можно положить пучки тростника.

Первая зимовка

Если водоем, заселенный рыбками, был обу­строен только в этом сезоне, то первая зимовка может стать серьезным испытанием, из кото­рого нужно будет извлечь необходимые уроки. Например, неправильное и чрезмерное корм­ление обитателей вашего водоема могло при­вести к засорению дачного прудика. Бесспорно, это усложнит зимовку ваших рыбок. Им также придется побороться за выживаемость, если при заселении вы нарушили рекомендуемые нормы: на каждую рыбку длиной 10-15 см должно приходиться не менее 50 литров воды. Покупая питомцев для своего рукотворного пруда, не забывайте узнавать, каков макси­мальный размер взрослой особи. Одно из глав­ных условий здоровой зимовки - достаточное количество кислорода. Преимущества имеют водоемы с большей поверхностью, но они при этом не должны быть мелкими, иначе есть опас­ность полного промерзания.

Как сделать поплавок

Из куска пенопласта необходимо вырезать кольцо диаметром 40-50 см. Внутренний диаметр будет зависеть от тол­щины пучка тростника , который необхо­димо вставить в сере­дину . Чем больше кольцо , тем лучше . Тростник , длина которого составляет примерно 60 см, необходимо поме­стить в пенопласт в виде плотного пучка так , чтобы 2/3 его длины находились под водой . Кольцо следует опустить на воду перед тем , как водоем замерзнет . Чтобы кольцо не дрейфовало , его необходимо зафиксировать на поверхности воды при помощи «якоря» из обломка кирпи­ча , привязанного к поплавку . Так как гиря будет лежать на дне , длина лески должна быть боль ше , чем глубина водоема .

Сложная проблема в домашнем рыбоводстве - это перезимовка рыбы.

Рыбоводы-любители применяют разнообразные приемы для предотвращения зимнего замора. Чаще всего после замерзания водоема, когда лед имеет толщину 1,5 - 2,5 см, прорубают лунку и через нее откачивают воду. Образовавшаяся воздушная полость между поверхностью воды и льдом высотой 15 - 20 см насыщает кислородом воду. Лунку во

льду закрывают, утепляют, чтобы холод не проникал к поверхности воды и не заморозил ее снова. Полезно в этом случае утеплить лед снегом.

Можно организовать зимовку рыбы по-другому. С наступлением осеннего похолодания при температуре воды ниже 8° рыба перестает кормиться. Пруд освобождают от воды. Часть рыб (декоративные и предназначенные на доращивание) помещаю в зимовальную яму. Это бетонный колодец диаметром 70 см, глубиной 2,5 м, где она находится до весеннего снеготаяния, то есть до конца марта следующего года. Уровень воды в нем в течение зимы уменьшается с 2,2 до 1,7 м. Вырытая в непромерзающем болотистом грунте, закрытая сверху деревянным шитом, а зимой и снегом, зимовальная яма-колодец сохраняет внутри плюсовую температуру всю зиму. Вода в ней не замерзает и кислород из надводной воздушной прослойки свободно обогащает воду, спасая рыбу от замора. Долго я искал и спрашивал на форумах о разнообразных приемах для предотвращения зимнего замора,и вот нашел как раньше спасали без электричества.Это где приспустить можно воду из подо льда а лед задержат мелководья и бугринки подо льдом,и будут пустоты заполненые воздухом.

Гидрологи́ческий режи́м – совокупность закономерно повторяющихся изменений гидрологического состояния водного объекта .

Термин «режим» происходит от франц. regime, из лат. regimen – «управление», «правление», regere – «управлять», «направлять», «исправлять» (восходит к праиндоевр. «reg-» «выпрямлять»).

Любой водный объект и его режим могут быть описаны с помощью некоторого набора гидрологических характеристик. Эти характеристики делятся на несколько групп. Приведём основные:

Кроме того, к числу гидрологических обычно относят и очень важные для описания любого водного объекта такие характеристики, как гидрохимические – минерализацию воды (мг/л) или её соленость (г/кг или ‰), содержание отдельных ионов солей, газов, загрязняющих веществ и др.; гидрофизические – плотность воды (кг/м 3), вязкость воды и др.; гидробиологические – состав и численность водных организмов (экз/м 2) и величину биомассы (г/м 3 , г/м 2) и др.

Совокупность гидрологических характеристик данного водного объекта в данном месте и в данный момент времени определяет гидрологическое состояние этого водного объекта.

Гидрологическое состояние водного объекта подобно погоде применительно к состоянию атмосферы подвержено постоянным пространственно-временным изменениям. Это состояние зависит от множества факторов и определяется характером процессов, происходящих в самом водном объекте, его связью с другими водными объектами, атмосферой, литосферой, влиянием хозяйственной деятельности человека и т. д. Однако вследствие сложности и многофакторности этих процессов и связей и недостаточного знания их природы мы часто вынуждены подходить к оценке гидрологического состояния водного объекта как явлению, подверженному случайным изменениям, которые подчиняются вероятностным законам и поддаются статистическому анализу.

При длительных наблюдениях за любым водным объектом обнаруживаются некоторые закономерности в изменениях его гидрологического состояния, например, в течение года. Совокупность закономерно повторяющихся изменений гидрологического состояния водного объекта – это и есть его гидрологический режим. Некоторым аналогом гидрологического режима применительно к атмосфере можно считать климат.

Сущность гидрологического режима водных объектов – это изменения гидрологических характеристик в пространстве и во времени. Под изменением гидрологических характеристик в пространстве понимают их изменение от места к месту (вдоль, поперёк или по глубине реки , вдоль или по глубине моря или озера и т.д.), от одного водного объекта к другому.

Изменение гидрологических характеристик во времени (временная изменчивость) может быть разных масштабов. Например, выделяют изменчивость вековую (с интервалами времени или периодами, исчисляемыми веками); многолетнюю (периоды колебаний – от нескольких лет до многих десятков лет), внутригодовую, или сезонную (изменения в течение года), кратковременную, имеющую период в несколько суток (например, колебания синоптического масштаба с периодом 3–10 дней), сутки (суточная или внутрисуточная изменчивость), минуты и секунды. Главные причины вековой и многолетней изменчивости гидрологических характеристик – долгопериодные изменения климата, а также воздействие хозяйственной деятельности человека. Основные причины внутригодовых (сезонных) изменений – смена сезонов года; колебаний синоптического масштаба – процессы в атмосфере (перемещение циклонов, антициклонов и атмосферных фронтов), изменчивости суточного масштаба – вращение Земли вокруг оси и сопутствующие ему смена дня и ночи и приливы. Природа колебаний самого малого временного масштаба (минуты, секунды) – волны на поверхности воды, макро- и микротурбулентность в водных потоках.

Гидрологический режим водного объекта – хотя и закономерное, но всё же лишь внешнее проявление некоторых более сложных процессов, свойственных водному объекту, или обусловленных его взаимодействием с другими водными объектами, атмосферой, литосферой. Наблюдая за уровнем или расходом воды в реке, например, и выясняя закономерности их изменений, т. е. изучая их режим, мы пока оставляем в стороне причины этих изменений. Для того чтобы их вскрыть, необходимо изучить уже некоторые как внутренние, так и внешние процессы, воздействующие на режим водного объекта. Поэтому гидрологи изучают не только гидрологический режим водных объектов, но и гидрологические процессы, под которыми понимается совокупность физических, химических и биологических процессов, определяющих закономерности формирования гидрологического состояния и режима водного объекта.

Чтобы познать гидрологические процессы в любом водном объекте необходимо изучить, во-первых, явления, происходящие в водной толще рассматриваемого объекта (перемешивание вод, формирование температурной и плотностной стратификации, образование внутриводного льда, продуцирование кислорода благодаря жизнедеятельности зелёных растений и т. д.); во-вторых, процессы на твёрдых границах водного объекта – его дне и берегах (взаимодействие водного потока и грунтов, размыв грунта или аккумуляция наносов и т. д.); в-третьих, явления, происходящие на водной поверхности водного объекта – границе раздела вода–воздух (тепло- и газообмен с атмосферой, испарение воды и конденсация водяного пара, образование или таяние ледяного покрова, возникновение волн и течений под действием ветра и т. д.); в-четвёртых, взаимосвязь данного водного объекта с его водосбором (условия формирования стока воды, наносов, растворённых веществ, теплоты и т. д.).

В качестве примера рассмотрим некоторые характерные черты водного, термического и ледового режима рек в климатических условиях средней полосы России.

Водный режим рек

Во внутригодовом (сезонном) режиме таких рек выделяют ряд типичных периодов (фаз). Для большинства рек различают следующие фазы водного режима: половодье , паводки , межень . Эти фазы режима зависят прежде всего от характера водного питания рек. Выделяют четыре вида (источника) водного питания рек: снеговое, дождевое, ледниковое, подземное.

Половодье – это фаза водного режима реки, ежегодно повторяющаяся в данных климатических условиях в один и тот же сезон и характеризующаяся наибольшей водностью , высоким и продолжительным подъёмом уровня воды. Половодье формируется как талыми снеговыми, так и дождевыми водами. Таяние снега на равнинах вызывает весеннее половодье, таяние высокогорных снегов и ледников, а также выпадение длительных и сильных летних дождей (например, в условиях муссонного климата) – половодье в тёплую часть года (т. е. весенне-летнее или летнее половодье). Половодье, особенно обусловленное дождями, нередко имеет многовершинную форму.

Паводок – это фаза водного режима, которая может многократно повторяться в различные сезоны года и характеризуется интенсивным, обычно кратковременным увеличением расходов и уровней воды и вызывается дождями или снеготаянием во время оттепелей. В отдельных случаях расход воды на пике паводка может превысить максимальный расход воды половодья, в особенности на малых реках. Различают однопиковые и многопиковые паводки, одиночные паводки и паводочные периоды, когда на реке проходят серии паводков. Иногда паводок накладывается на волну половодья.

В половодья (как весеннее, так и летнее) часто заливается речная пойма . За исключением катастрофических случаев, заливание поймы – событие обычное, регулярное и поэтому не может стать неожиданным для населения и хозяйства. В отличие от половодья паводки обычно менее регулярны и трудно предсказуемы. Поэтому именно неожиданные дождевые паводки и приводят нередко к катастрофическим последствиям.

Межень – это фаза водного режима, ежегодно повторяющаяся в один и тот же сезон, характеризующаяся малой водностью, длительным стоянием низкого уровня и возникающая вследствие уменьшения питания реки. В межень реки обычно питаются только подземными водами. На многих реках России выделяют два периода пониженного стока – летнюю и зимнюю межень. В условиях холодного климата малые реки зимой могут иногда промерзать до дна. В условиях засушливого климата малые реки в летнюю межень могут пересыхать.

Для характеристики сезонных изменений водного режима рек обычно строят графики изменения расходов воды в течение года (гидрографы) для типичных по водности лет: самого многоводного и самого маловодного года за весь период наблюдений и года, близкого по водности к средней.

В нашей стране широко распространена довольно простая классификация рек по водному режиму. В этой классификации все реки бывшего СССР (исключая искусственно сильно зарегулированные) разделены на три большие группы: с весенним половодьем, с половодьем в тёплую часть года и с паводочным режимом.

На первом рисунке приведен схематический гидрограф – график изменения расхода воды в течение года (от января до декабря), типичный для рек с весенним половодьем и осенними паводками. Здесь же показано расчленение гидрографа на три вида водного питания: снеговое (в период половодья), дождевое (при паводках) и подземное (грунтовыми водами) (в зимнюю и летнюю межень). У разных рек или даже разных участков одной и той же реки разделение снегового и подземного питания во время половодья представляет сложную гидрологическую задачу. Это разделение зависит от гидрогеологических условий ближайших к реке территорий: водопроницаемости грунтов, высоты залегания водоупора и др. Поэтому в разных условиях возможно разное сочетание снегового и подземного питания и во время половодья. У некоторых рек на пике половодья подземное питание вообще прекращается, и речные воды в это время питают водоносные горизонты . В других случаях в период половодья подземное питание реки, наоборот, возрастает. Возможны и промежуточные ситуации.

Термический режим рек

Поскольку на температуру воды в реке влияют изменения температуры воздуха, основная причина временных изменений температуры воды в реках – метеорологическая.

В условиях умеренного климата наиболее типичны сезонные изменения температуры воды в реках, показанные на втором рисунке. Зимой под ледяным покровом вода у поверхности реки имеет температуру около 0°С. Весной в период повышения температуры воздуха и осенью в период её понижения изменения температуры воды следуют с некоторым отставанием за изменениями температуры воздуха. Максимальная температура воды по величине меньше максимальной температуры воздуха (например, на реках Подмосковья эти температуры соответственно равны приблизительно 22–24 и 28–30°С). Максимум температуры воды наступает несколько позже максимальной температуры воздуха. В связи с тем, что температура воды в реках, как правило, не может приобретать отрицательные значения, среднегодовая температура воды в реках заметно выше, чем среднегодовая температура воздуха.

Помимо сезонных колебаний температура воды в реках обычны и её суточные изменения, которые также отстают от изменения температуры воздуха. Минимальная температура воды обычно наблюдается в утренние часы, максимальная – в 15–17 часов (максимум температуры воздуха обычно наступает на 1–2 ч раньше). На больших реках суточные изменения температуры воды обычно не более 1–2°С, на малых реках они могут быть заметно больше. Суточные колебания температуры воды хорошо выражены на реках, берущих начало из ледников.

Температура речной воды имеет и пространственные изменения. Хорошо известно подчиняющееся широтной зональности изменение температуры воды вдоль крупных рек, текущих в меридиональном направлении. У таких рек наибольшее различие температуры воды вдоль реки отмечается в период нагревания. Часто температура воды в реках изменяется ниже впадения крупных притоков, или весенних ледовых явлений. Замерзание и вскрытие реки происходит через несколько дней после перехода температуры воздуха через 0ºС.

В периоды осенних и весенних ледовых явлений обычно наблюдаются осенний и весенний ледоходы , заторы и зажоры .

В.Н. Михайлов, М.В. Михайлова

Почему вода в водоёмах зимой не промерзает до самого дна?

    Здравствуйте!

    Температура наибольшей плотности воды: +4 С см: http://news.mail.ru/society/2815577/

    Это свойство воды является принципиально важным для выживания живности многих водомов. Когда начинается понижение температуры воздуха (и соответственно - воды) осенью и в предзимье, сначала при температуре выше +4 С более холодная вода с поверхности водома опускается вниз (как более тяжлая), а тплая, как более лгкая, поднимается вверх и идт обычное вертикальное перемешивание воды. Но как только во всм водоме по вертикали устанавливается Т= +4 С, процесс вертикальной циркуляции останавливается, поскольку с поверхности вода уже при +3С становится легче той, что находится ниже (при +4С) и турбулентная теплопередача холода по вертикали резко сокращается. В итоге с поверхности вода даже начинает замерзать, потом устанавливается и ледяной покров, но при этом в зимний период передача холода в нижние слои воды резко уменьшается, так как и сам слой льда сверху, и тем более, слой выпавшего на лд сверху снега обладают определ1нными теплоизоляционными свойствами! Поэтому у дна водома почти всегда остатся хотя бы тонкий слой воды при Т=+4С - а это и есть температура выживания в водоме речной, болотной, озрной и пр. живности. Если бы не это интересное и важное свойство воды (Мах плотность при +4С), то водомы на суше все промерзали бы до дна каждую зиму, и жизнь в них не была бы такой обильной!

    Всего доброго!

    Здесь работает очень важное свойство воды. Твердая вода (лед) легче своего жидкого состояния. Благодаря этому лед всегда находится сверху и защищает нижние слои воды от мороза. Только очень мелкие водоемы в очень сильный мороз могут промерзать до дна. В обычных случаях под слоем льда всегда находится вода, в которой сохраняется вся подводная жизнедеятельность.

    Все зависит от силы морозов,иногда даже глубокие стоячие водоемы могут замерзать до дна. если морозы под минус 40 стоят несколько недель. Но в основном, действительно, водоемы не промерзают, что дает возможность выжить обитающим в них рыбам и растениям. А дело тут в таком любопытном свойстве воды, как отрицательный коэффициент расширения, который имеет вода при температуре от +4 градусов и ниже. То есть если вода нагрета выше 4 градусов, то при увеличении ее температуры она будет стремиться занять больший объем, ее плотность уменьшается и он поднимается вверх. Если же вода остывает ниже 4 градусов ситуация меняется на противоположную - чем холоднее вода, тем легче она становится и тем меньше ее плотность, а следовательно более холодные слои воды стремятся наверх, а имеющие температуру +4- вниз. Таким образом подо льдом температура воду устанавливается в +4 градуса. Пограничные слои воды рядом со льдом будут либо подтапливать лед, либо подмерзать сами, увеличивая толщину льда, пока не установится динамическое равновесие - сколько льда растает от теплой воды, столько воды замерзнет от холодного льда. Ну а про теплопроводность льда сказано уже все.

    Вы упустили очень важный момент: самая большая плотность воды - при температуре +4 градуса. Поэтому, прежде чем водоем начнет замерзать, вся вода в нем, перемешиваясь, охлаждается до этих самых плюс четырех, а уж затем верхний слой охлаждается до нуля и начинает замерзать. Так как лед легче воды, он не опускается на дно, а остается на поверхности. Кроме того, лед имеет очень малую теплопроводность и это резко уменьшает теплообмен между холодным воздухом и слоем воды подо льдом.