Обереги

Ядерную установку или пункт хранения ядерных материалов. Ядерная энергетика как источник опасности Особорежимные города ядерного оружейного комплекса

Краткая характеристика и классификация радиационно-опасных объектов

В настоящее время на многих объектах экономики, военных объектах, научных центрах и т.д. используются вещества, содержащие ядерное горю­чее. Отдельные системы, блоки и устройства этих объектов преобразуют энергию делящихся ядер в электрическую и другие виды энергий. Ряд предприятий используют в технологических процессах или хранят на своей территории делящиеся материалы. Все эти предприятия относятся к объек­там с ядерными компонентами. Однако радиационно-опасными из них явля­ются далеко не все.

Радиационно-опасный объект (РО ОЭ) – это объект на котором перерабатывают или транспортируют радиоактивные вещества, при аварии или разрушении которого может произойти облучение или радиоактивное загрязнение людей, сельскохозяйственных животных, растений, радиоактивное загрязнение объектов экономики и природной среды.

К радиационно-опасным объектам относятся:

Предприятия ядерного топливного цикла (ЯТЦ), предназначенные для добычи и переработки урановой руды, переработки и захоронения радиоактивных отходов: предприятия урановой промыш­ленности, радиохимической промышленности, места переработки и захоро­нения радиоактивных отходов;

Атомные станции (АС): атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АСТ);

Объекты с ядерными энергетическими установками (ЯЭУ): корабельными ЯЭУ, космическими ЯЭУ, войсковыми атомными электростанциями (ВАЭС);

Ядерные боеприпасы (ЯБП) и склады для их хранения.

Краткая характеристика радиационно-опасных объектов:

Предприятия ЯТЦ , предназначенные для добычи и переработки урановой руды, переработки и захоронения радиоактивных отходов, осуществляют добычу ура­новой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов (ЯЭР), переработку радиоактивных отходов, их хранение и окончательное размещение. Предприятия ядерного топливного цикла можно условно разделить на 3 большие группы:

Предприятия урановой промышленности;

Радиохимические заводы;

Места захоронения радиоактивных отходов.

К предприятиям урановой промышленности относятся объекты осущест­вляющие:

Добычу урановой руды (открытой разработкой или из шахт);

Обработку урановой руды. Данные предприятия включают объекты по очистке урановой руды на специальных дробилках в несколько этапов и обогащения методом га­зовой диффузии.

После добычи урановой руды она размельчается и отделяется от пустой породы. Обычно для этого используют процесс флотации. Переработанный уран представляет собой концентрат оксида урана – U 3 O 8 .

В последующем концентрат оксида урана доставляется на специальное предприятие, на котором в результате обработки получают химическое соединение гексафторид урана – UF 6 . Это удобная форма для последующего обогащения урана с использованием процесса газовой диффузии, так как соединение UF 6 сублимируется при температуре 53 0 С.

Гексафторид урана подвергается последующему обогащению на специальных обогатительных фабриках. В результате процесса образуются два потока, содержащие соединения U 235 . Обедненный U 235 поток хранится на обогатительной фабрике в отвалах, а обогащенный превращается в диоксид урана (UО 2) и направляется на завод по производству тепловыделяющих элементов (ТВЭЛов) и тепловыделяющих сборок (ТВС).

1,8-4,9 % -для реакторов на тепловых нейтронах, 8 - 20 % для высокотемпературных газовых реакторов, более 20 % -для реакторов на быстрых нейтронах.

На заводах по изготовлению ТВЭЛов и ТВС диоксид урана, предназначенный для реакторов, переводят в топливные таблетки и помещают в трубки из циркалоя, получая ТВЭЛы. Определенное число трубок соединяют вместе при помощи соответствующих связывающих пластин, фитингов и прокладок, образуя ТВС. ТВС в последующем используются в ЯЭР.

Отработанное в ядерных реакторах топливо может отправляться на захоронение, но может быть переработано с извлечением необходимых компонентов и частично повторно (дополнительно) использовано. Переработка отработанного топлива осуществляется на специальных перерабатыва­ющих предприятиях (радиохимических заводах). В ходе технологических процессов переработки осуществляется раз­делка ТВЭЛов, растворение топлива, химическое отделение урана, плуто­ния, цезия, стронция и других радиоактивных изотопов и изготовление различных расщепля­ющихся материалов (ядерного топлива для боеприпасов, источников ионизи­рующих излучений, индикаторов и т.д.). При переработке отработанные топливные стержни освобождаются от оболочки и помещаются в ванну с азотной кислотой. Таблетки растворяются в кислоте и образовавшийся раствор вводят в проточную экстракционную систему, в результате чего уже в первом цикле выделения удается извлечь до 99 % продуктов радиоактивного распада. В дальнейшем осуществляется очищение и разделение плутония и урана. Конечными продуктами этой стадии обычно являются соединения UО 2 и РuО 2 , которые могут быть повторно использованы.

Разделение UО 2 и РuО 2 обычно осуществляется химическими методами. При этом полученный плутоний может быть использован на АЭС с применением быстрых нейтронов.

В настоящее время все технологии по переработке отработанного топлива и восстановления плутония приостановлены из-за подписания ряда соглашений между ведущими ядерными державами по вопросам ограничения распространения ядерного оружия и снижения его арсеналов, а также с целью предотвращения возможности его хищения в другие страны и приобретения террористическими организациями.

Радиоактивные отходы радиохимических заводов направляются на за­хоронение. Однако перед захоронением они нуждаются в дополнительной переработке. Низко и среднеактивные отходы (НСАО), характеризующиеся большими объемами, направляются на переработку, общей тенденцией которой являет­ся максимально возможное уменьшение их объема при помощи технологических процессов сорбции, коагуляции, выпа­ривания, прессовки и т.д. с последующим включением в матрицы (цемент, битум, смолы и т.д.). Хранение НСАО осуществляется в бетонных емкос­тях с последующим захоронением в естественных или искусственных полостях. Для хранения и перера­ботки высокоактивных (ВАО) отходов отработаны необходимые технологии, но их практическое внедрение в странах СНГ не ведется. ВАО хранятся на территории России в временных хранилищах, которые в настоящее вре­мя переполнены.

Схематично цикл получения ядерного топлива, переработки и захоро­нения радиоактивных отходов представлен на рис.1.

Наиболее характерными авариями на предприятиях ядерного топливно­го цикла являются:

Возгорание горючих компонентов и радиоактивных материалов;

Превышение критической массы делящихся веществ;

Появление течей и разрывов в резервуарах-хранилищах;

Характерные аварии с ЯБП и готовыми изделиями.


Рис.1. Схема цикла получения ядерного топлива, переработки и захоронения радиоактивных отходов

Атомная станция (АС) - это электростанция, на которой ядерная (атомная) энергия преобразуется в тепловую, а затем и в электрическую. На АС теп­ло, выделяющееся в ядерном реакторе, используется для получения водя­ного пара, вращающего турбогенератор (АЭС), и частично для подогрева теплоносителя (АСТ, АТЭЦ).

АС включают: один или несколько ядерных энергетических реакторов (паропроизводящие установки - главная осо­бенность АС), паровые турбины, системы трубопроводов, конденсаторы, системы вывода генерируемой мощности и тепла, ряд вспомогательных цехов, установок и производств.

В зависимости от используемого топлива, типа ядерной реакции и способа снятия тепла в мире разработано 7 основных типов ядерных энергетических реакторов. В странах СНГ АС имеют 4 типа реакторов:

Реакторы кипящего типа (ВВЭР-440) на тепловых нейтронах с двух­контурным охлаждением реактора и съемом тепла водой;

Реакторы с водой под давлением (ВВЭР-1000);

Реакторы на быстрых нейтронах с охлаждением жидким натрием или магнием (БН);

Графитовые реакторы кипящего типа (РБМК).

С точки зрения безопасности предпочтение имеют легководные реак­торы типа ВВЭР-440 и ВВЭР-1000, что объясняется наличием у них отрицательного ко­эффициента реактивности, проявляющегося в уменьшении нейтронного пото­ка при увеличении температуры теплоносителя в активной зоне реактора, трехкратным резервированием всех активных систем, а также наличием противоаварийной оболочки.

В реакторах типа РБМК проведено разделение функций теплоносителя (вода) и замедлителя нейтронов (графит). В результате появился по­ложительный паровой эффект реактивности, который проявляется в увеличении нейтронного по­тока при повышении температуры воды и превращении ее в пар. В свою очередь это может привести к неконтролируемому разгону реактора при выходе из строя или отключении систем безопасности.

Отработанное на АЭС топливо первоначально, перед отправкой на радиохимические заводы, хранится на территории АЭС в специальных бассейнах. Ввиду того, что ядерное топливо является высокоактивным, в нем продолжается процесс деления, а вода служит одновременно защитной и охлаждающей средой. После нескольких лет охлаждения в бассейнах ТВС пригодны для транспортировки и дальнейшей переработки.

Основные причины аварий на атомных станциях:

Низкий уровень технологической дисциплины оперативного персона­ла АС и его профессиональной подготовки;

Отсутствие должного внимания и требовательности со стороны ми­нистерств и ведомств, организаций и учреждений, ответственных за обеспечение безопасности АС, на этапах их проектирования, строительства и эксплуатации.

Корабельные объекты с ядерными энергетическими установками (ЯЭУ) оснащаются реакторами легководного и жидкометаллического типов. Принципиальными отличиями их от реакторов АС являются:

Использование в качестве топлива высокообогащенного урана;

Сравнительно малые размеры;

Высокая степень защиты (40-60 кг/см 2 для подводных лодок и 10-20 кг/см 2 для надводных кораблей).

Специфические причины аварий на корабельных ЯЭУ: разгерметизация первого контура реактора и попадание забортной воды под биологическую защиту.

К войсковым атомным электростанциям (ВАЭС) относятся реакторы легководного типа модульного исполнения с естественной циркуляцией теплоносителя. Основные отличия ВАЭС:

Использование в качестве теплоносителя химически и пожароопас­ного вещества нитрина;

Отсутствие оболочки внешней защиты.

ВАЭС существуют в трех видах исполнения: плавучие, на железнодорожных плат­формах и блочно-транспортные, общим весом до 100 тонн.

Специфические причины аварий на ВАЭС: разгерметизации первого контура реактора и механические повреждения.

Отличительной особенностью космических ЯЭУ являются их небольшие размеры, что достигается использованием высокоочищенного топлива с высоким содержанием стронция–90 и плутония-238. Специфические причины аварии на космических ЯЭУ: несанкционированный выход на запроектную мощность в результате удара или падения и нештатные ситуации на борту.

Ядерные боеприпасы (ЯБП) и взрывные устройства к ним в мирное время хранятся на складах в готовности к выдаче и боевому примене­нию. Часть из них находится на боевом дежурстве. К наиболее характерным аварий­ным ситуациям относятся: столкновение и опрокидывание транспортных средств с ЯБП, пожары в сборочных помещениях, хранилищах, комплексах и воздействие газовых разрядов.

– это опасное техногенное происшествие на стационарных или транспортных энергоустановках, использующих атомную (ядерную) энергию деления или синтез. К числу ядерных энергетических установок относятся: стационарные АЭС с реакторами на тепловых и быстрых нейтронах, ядерные паропроизводящие установки (ЯППУ) для морских судов, ледоколов и ПЛ; ядерные энергетические установки для ракетно-космических систем; исследовательские и демонстрационные ядерные и термоядерные установки (импульсные и с магнитным удержанием плазмы).

Наиболее применяемыми в отечественной и мировой практике являются АЭС с реакторами трех видов: корпусного типа на тепловых нейтронах – водо-водяные энергетические реакторы (ВВЭР); большой мощности канальные (РБМК); на быстрых нейтронах (БН). Теплоносителем реакторов ВВЭР и РБМК является вода, реакторов БН – жидкий металл (натрий). В ЯППУ в качестве теплоносителя используется как вода, так и жидкий металл (свинец, висмут). Перспективными считаются атомные станции теплоснабжения (ACT) с реакторами типа ВВЭР. В России действует значительное количество исследовательских реакторов, в основном водо-водяных.

Термоядерные установки с импульсными реакторами (ИТЯР) и с реакторами с торообразными камерами магнитного удержания плазмы (ТОКАМАК) получают свое развитие в рамках ограниченного числа национальных и международных проектов.

Энергетические установки АЭС, ACT, ЯППУ с реакторами ВВЭР, РБМК и БН, мощностью от 100 до 1000 МВт, а также исследовательские реакторы в силу своей большой технической сложности характеризуются большим спектром аварий: от ядерных и радиационных в первом контуре до традиционных промышленных в первом, во втором и в ряде случаев в третьем контурах. Аварии могут возникнуть не только при эксплуатации атомных энергетических установок на мощности, но и при их транспортировке, загрузке, выгрузке и хранении ядерного топлива, при производстве плановых предупредительных и ремонтно-восстановительных работ, при выводе из эксплуатации, консервации и утилизации установок.

Наиболее опасны на атомных энергетических установках аварии и катастрофы с повреждением и расплавлением активной зоны и выходом во внешнюю среду радиоактивности (за пределы многоуровневой эшелонированной защиты – оболочки тепловыделяющих элементов, каналы, корпуса реакторов конфайменты и контайменты). Примерами таких тяжелых событий являются крупнейшие аварии и катастрофы на Чернобыльской АЭС (СССР) с реактором канального типа и на АЭС Три Майл Айленд (США) с реактором корпусного типа. Первичные и вторичные ущербы от них измеряются десятками и сотнями миллиардов долларов.

Следующими по тяжести являются аварии на парогенераторах АЭС с реакторами ВВЭР, на турбогенераторах АЭС с реакторами РБМК, на задвижках и внутрикорпусных устройствах АЭС с реакторами ВВЭР, на патрубках АЭС с реакторами БН.

В целях предотвращения таких аварий на стадиях проектирования и эксплуатации АЭС, ACT, ЯППУ проводится вероятностный анализ безопасности для всего набора аварийных ситуаций (штатных, нештатных, проектных, запроектных и гипотетических). При эксплуатации в соответствии с нормами и требованиями государственного надзора осуществляется контроль нарушений и аварий по международной шкале ядерных событий (с учетом срабатывания систем аварийной защиты, аварийного останова и выхода радиоактивности). Анализ вероятностей возникновения аварий на объектах атомной энергетики показал, что в зависимости от типов реакторов, видов аварий они находятся в пределах от 10 -2 до 10 -8 1/год и ниже, эти оценки позволяют обосновать и назначить мероприятия по повышению безопасности и снижению рисков аварий.

Международная шкала событий на АЭС представлена в табл. ниже.

Международная шкала событий АЭС

Уровень Наименование Критерий Пример
Аварии 7 Глобальная авария Выброс в окружающую среду большой части радиоактивных продуктов, накопленных в активной зоне, в результате которого будут превышены дозовые пределы для запроектных аварий*. Возможны острые лучевые поражения. Длительное воздействие на здоровье населения, проживающего на большой территории, включающей более чем 1 страну. Длительное воздействие на окружающую среду. Чернобыль СССР, 1986
6 Тяжелая авария Выброс в окружающую среду большой части радиоактивных продуктов, накопленных в активной зоне, в результате которого дозовые пределы для проектных аварий* будут превышены, а для запроектных – нет. Для ослабления серьезного влияния на здоровье населения необходимо введение планов мероприятий по защите работников (персонала) и населения в случае аварий в зоне радиусом 25 км, включающих эвакуацию населения. Уиндскейл, Великобритания, 1957
5 Авария с риском для окружающей среды Выброс в окружающую среду такого количества продуктов деления, который приводит к незначительному повышению дозовых пределов для проектных аварий** и радиационноэквивалентных выбросу порядка сотни ТБк иода-131. Разрушение большей части активной зоны, вызванное механическим воздействием или плавлением с превышением максимального проектного предела повреждения твэлов. В некоторых случаях требуется частичное введение планов мероприятий по защите персонала и населения в случае аварии (местная йодная профилактика и/или частичная эвакуация) для уменьшения влияния облучения на здоровье населения. Три-Майл-Айленд, США, 1979
4 Авария в пределах АЭС Выброс радиоактивных продуктов в окружающую среду в количестве, превышающем значения для уровня 3, который привел к переоблучению части персонала, но в результате которого не будут превышены дозовые пределы для населения**. Однако требуется контроль продуктов питания населения. Сант-Лаурент, Франция, 1980
Происшествия 3 Серьезное происшествие Выброс в окружающую среду радиоактивных продуктов выше допустимого суточного, но не превышающий 5-кратного допустимого суточного выброса газообразных летучих радиоактивных продуктов и аэрозолей и/или 1/10 годового допустимого сброса со сбросными водами. Высокие уровни радиации и/или большие загрязнения поверхностей на АЭС, обусловленные отказом оборудования или ошибками эксплуатации. События, в результате которых происходит значительное переоблучение работающих (персонала) (доза > 50 мЗв, > 5 бэр). При рассматриваемом выбросе не требуется принимать защитных мер за пределами площадки. Происшествия, при которых дальнейшие отказы в системах безопасности должны привести к авариям или разрушениям, при которых системы безопасности не способны предотвратить аварию, если произойдет исходное событие. Ванделлос, Испания, 1989
2 Происшествие средней тяжести Отказы оборудования или отклонения от нормальной эксплуатации, которые хотя и не защищают непосредственно безопасность станции, но способны привести к значительной переоценке мер по безопасности.
1 Незначительное происшествие Функциональные отклонения или отклонения в управлении, которые не представляют какого-либо риска, но указывают на недостатки в обеспечении безопасности. Эти отклонения могут возникнуть из-за отказа оборудования, ошибки эксплуатационного персонала или недостатков руководства по эксплуатации. (Такие события должны отличаться от отклонений без превышения пределов безопасной эксплуатации, при которых управление станцией осуществляют в соответствии с установленными требованиями. Эти отклонения, как правило, считают «ниже уровня шкалы».)
0
Ниже уровня шкалы
Не влияет на безопасность

Под дозовым пределом для запроектных аварий принимают непревышение дозы внешнего облучения людей 0,1 Зв за первый год после аварии и дозы внутреннего облучения щитовидной железы детей 0,3 Зв за счет ингаляции на расстоянии 25 км от станции, что обеспечивается при непревышении аварийного выброса в атмосферу 11,1×10 14 Бк. йода-131 и 11,1×10 13 Бк цезия-137.

** При проектных авариях доза на границе санитарно-защитной зоны и за ее пределами не должна превышать 0,1 Зв на все тело за 1-й год после аварии и 0,3 Зв на щитовидную железу ребенка за счет ингаляции.

Учитывая тяжесть последствий ядерных аварий на атомных энергоустановках наиболее важными представляются комплексные мероприятия по их предупреждению с созданием систем жесткой, функциональной, естественной, охранной и комбинированной защиты. Невозможность достижения абсолютной безопасности атомных энергетических установок с нулевым риском аварий требует непрерывного совершенствования методов и систем управления защитой, сил и средств локализации и ликвидации последствий аварий. Для предотвращения аварии на несущих элементах реакторов в анализ прочности и ресурса вводят различные виды предельных состояний: вязкое разрушение при нарушении запасов по пределам текучести и прочности, хрупкое разрушение при исчерпании запасов по критическим температурам и коэффициентам интенсивности напряжений, циклическое разрушение при несоблюдении запасов по амплитудам местных напряжений и деформаций и запасов по долговечности, длительное статическое разрушение при исчерпании запасов по пределам длительной прочности, недопустимое образование пластических деформаций и деформаций ползучести. Наступление указанных предельных состояний контролируется и диагностируется с применением методов неразрушающего контроля (дефектоскопии, виброметрии, тензометрии, термометрии).


Виды ЯОО:

Объекты ядерно-оружейного комплекса (ЯОК);

атомные станции (АС);

Объекты ядерного топливного цикла (ЯТЦ);

Объекты атомной науки;

Объекты утилизации атомных силовых установок.

Радиационно опасный объект (РОО) – это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии или разрушении которого может произойти облучение ионизирующим излучением (ИИ) или радиоактивное загрязнение людей, сельскохозяйственных животных, растений, объектов экономики и окружающей среды.

К РОО относятся:

предприятия ядерного топливного цикла (ЯТЦ): урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов;

атомные станции (АС): атомные электростанции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АСТ);

объекты с ядерными энергетическими установками (ЯЭУ): корабельными, космическими, войсковыми атомными электростанциями (ВАЭС);

ядерные боеприпасы (ЯБ) и склады для их хранения.

При радиационных авариях (РА) на РОО происходят выбросы радиоактивных веществ (РВ) в атмосферу и гидросферу, что приводит к радиоактивному загрязнению окружающей среды и, как следствие, к облучению персонала объекта, а в тяжелых случаях и населения.

Классификация радиационных объектов

(ОСПОРБ-2010. СП 2.6.1.2612–10)

Потенциальная опасность РОО определяется его возможным радиационным воздействием на население и персонал при РА.

Классификация РОО по степени опасности приведена в таблице 2.

По потенциальной радиационной опасности устанавливается четыре категории (I…IV) РОО.

Потенциально более опасными являются РОО, в результате деятельности которых при аварии возможно облучение не только работников РОО, но и населения. Наименее опасными РОО являются те, где исключена возможность облучения лиц, не относящихся к персоналу.

Таблица 2

Классификация РОО по потенциальной опасности

Категория РОО Объекты
I При аварии возможно радиационное воздействие на население и могут потребоваться меры по его защите
II Радиационное воздействие при аварии ограничивается территорией СЗЗ
III Радиационное воздействие при аварии ограничивается территорией объекта
IV Радиационное воздействие при аварии ограничивается помещениями, где проводятся работы с источниками излучения

Зонирование территории в районе размещения РОО приведено на рис. 1.

Радиоактивное загрязнение местности при авариях на атомных станциях (АС) качественно характеризуется теми же параметрами, что и радиоактивное заражение при ядерном взрыве (ЯВ), однако имеет и целый ряд особенностей, существенно влияющих на состав и содержание мероприятий по защите населения и территорий.

Государственное нормирование в области обеспечения радиационной безопасности установлено Федеральным законом «О радиационной безопасности населения» от 09.01.96 г. №3-ФЗ.

Требования к ограничению техногенного облучения в нормальных условиях эксплуатации источников ионизирующего облучения, ограничение природного и медицинского облучения населения определены Нормами радиационной безопасности НРБ-99/2009 и приведены в Приложении 7.

Требования по ограничению облучения населения в условиях радиационной аварии (РА) определены в НРБ-99/2009.

Требования к администрации, персоналу и гражданам по обеспечению радиационной безопасности, методы и средства индивидуальной защиты и личной гигиены, медицинское обеспечение радиационной безопасности, организации работ с источниками ИИ, санкции за нарушение требований норм и правил по радиационной безопасности, указания по заполнению таблицы «Санитарно-эпидемиологическое заключение» определены в ОСПОРБ-99/2010.


Рис. 1. Зонирование территории в районе размещения РОО

Критерии оценки радиационной обстановки

1. Величина нормального естественного радиационного фона для территории Московской области не должна превышать 20 мкР/ч.

2. Уровень радиации (мощность дозы) 60 мкР/ч и более – ЧС на территории (см. НРБ – 99/2009).

3. Среднегодовая эффективная доза для населения не должна превышать 5мЗв≈500мР=0,5Р(см. основные пределы доз НРБ – 99/2009).

4. Уровень радиации (мощность дозы) внутри помещений не должен превышать его значение на открытой местности более чем на 20 мкР/ч (см. НРБ – 99/2009).

Химически опасные объекты

Химически опасный объект – это объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества (ОХВ), при аварии или разрушении которых могут произойти гибель или химическое поражение людей, с/х животных и растений, а также химическое заражение окружающей среды.

ОХВ – химическое вещество, прямое или опосредованное действие которого на человека может вызвать острые или хронические заболевания людей или их гибель.

К ХОО относятся:

· предприятия химических отраслей промышленности, а также отдельные установки (агрегаты) и цеха, производящие и потребляющие аварийно химически опасные вещества (АХОВ);

· заводы (комплексы) по переработке нефтегазового сырья;

· ж/д станции, порты, терминалы и склады на конечных (промежуточных) пунктах перемещения АХОВ;

· производства других отраслей промышленности, использующие АХОВ;

· транспортные средства (контейнеры и наливные поезда, автоцистерны, речные и морские танкеры, трубопроводы и т.д.).

ХОО классифицируются не только как ПОО (по степени опасности - 1..5 класс – см. таблицу 1), но и по химической опасности .

По химической опасности ХОО и территории, на которых эти ХОО размещены, классифицируются по степеням химической опасности.

Классификация ХОО и административно-территориальных единиц (АТЕ) по химической опасности установлена Директивой НГО СССР - заместителя Министра обо­роны СССР 1990 г. «О совершенствовании защиты населения от СДЯВ и классификации АТЕ и объектов народного хозяйства по химической опасности»и приведена в таблице 3.

АХОВ – ОХВ, применяемое в промышленности и с/х, при аварийном выбросе (проливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах).

АХОВ ингаляционного действия (АХОВ ИД) – АХОВ, при выбросе (проливе) которого могут произойти массовые поражения людей ингаляционным путем (аммиак, хлор, соляная кислота и др.).

На территориях по данным с ХОО составляются Перечни наиболее распространенных АХОВ.

Перечень наиболее распространенных АХОВ:

РФ – 22 вещества;

Московская область ~ 16 веществ;

Муниципальное образование – до 4-х веществ.

Перечень наиболее распространенных АХОВ на территории РФ приведен в таблице 4.

Таблица 3

Критерии классификации ХОО

В мире сейчас наблюдается активизация в развитии атомной энергетики. Если говорить о масштабности национальных проектов, то лидерами являются Индия и Китай. В ближайшие несколько лет мы станем свидетелями того, что в каждой из этих стран будет одновременно сооружаться более 10 энергетических блоков. Современная мировая атомная энергетика насчитывает 442 действующих блока.

Ощутимую толику вносит ядерная энергетика в экономику промышленно развитых стран, имеющих недостаточное количество природных энергоресурсов. К таким странам относится Франция, Швеция, Бельгия, Финляндия, Швейцария. В этих странах энергия, производимая на АЭС, занимает от одной четвертой до половины общей производимой энергии. А энергия, производимая на АЭС в США, составляет 20% от всей производимой на Земле ядерной энергии.

Страны, взявшие курс на развитие атомной энергетики - Франция, Япония и ряд других (рис. 1) за 25 лет коренным образом изменили энергетический баланс своей экономики и достигли выдающихся успехов в конверсии углеводородной энергетики, существенно подняли роль атомной энергетики, решили важные экологические проблемы .

Вместе с тем не стоит забывать, что ядерная энергетика не терпит к себе халатного отношения. Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира. Ошибки нескольких человек могут привести к необратимым последствиям и изменениям в жизни огромных сообществ или даже стран.

Рис. 1.

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационно-опасными объектами (РОО). К таким объектам относятся:

  • 1) предприятия ядерного топливного цикла (предприятия ЯТЦ);
  • 2) атомные станции (АС): атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АСТ);
  • 3) объекты с ядерными энергетическими установками (объекты с ЯЭУ): корабельные, космические;
  • 4) исследовательские ядерные реакторы;
  • 5) ядерные боеприпасы (ЯБП) и склады их хранения;
  • 6) установки технологического, медицинского назначения и источники тепловой и электрической энергии, в которых используются радионуклиды.

Выброс радиоактивных веществ за пределы ядерно-энергетического реактора, в результате чего может создаться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

При прогнозе радиационной обстановки учитывается масштаб аварии, тип реактора, характер его разрушения и характер выхода радиоактивных веществ (РВ) из активной зоны, а также метеоусловия в момент выброса РВ.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют три типа радиационных аварий (табл. 2).

Таблица 2. Классификация радиационных аварий

С точки зрения медицинских последствий, контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп: малые, средние, большие, крупные и катастрофические. радиация ядерный энергетика авария

К малым радиационным авариям относятся инциденты, не связанные с серьезными медицинскими последствиями и характеризующиеся только экономическими потерями. При этом возможно облучение лиц различной категории. Дозы лучевого воздействия не должны превышать установленных НРБ-96 санитарных норм.

Для больших аварий используются дополнительные подразделения по критерию распространенности, связанные с радиоактивным загрязнением: персонала и рабочих мест; производственного помещения; здания; территории; санитарно-защитной зоны.

Четвертая группа радиационных аварий (крупные аварии) объединяет инциденты, при которых возможно чисто внешнее, совместное внешнее и внутреннее облучение небольшого числа лиц.

В пятую группу (катастрофические аварии) относятся радиационные аварии, при которых наблюдается совместное внешнее и внутреннее облучение больших контингентов населения, проживающего в одном или нескольких регионах.

Существует достаточно много факторов опасности ядерных реакторов, в числе которых можно выделить основные.

  • 1. Возможность аварии с разгоном реактора . При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
  • 2. Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их. Например, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
  • 3. Необходимость захоронения отработавшего реактора . На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.
  • 4. Радиоактивное облучение персонала. Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции .