Обереги

Ядерное топливо для быстрых реакторов. Реакторы на быстрых нейтронах

Ядерные энергетические установки используются на атомных электрических станциях, на спутниках Земли, на крупном морском транспорте, основным элементом которых является ядерный реактор.

Ядерным реактором называется устройство, в котором осуществляется управляемая цепная реакция деления тяжелых ядер, сопровождающаяся выделением энергии. Как уже отмечалось ранее, условием осуществления самоподдерживающейся цепной ядерной реакции является наличие достаточного количества вторичных нейтронов, возникающих в процессе деления тяжелого ядра на более легкие ядра (осколки) и имеющих возможность участвовать в дальнейшем процессе деления тяжелых ядер.

Основными частями ядерного реактора любого типа являются:

1) активная зона , где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия;

2) отражатель нейтронов , который окружает активную зону и способствует уменьшению утечки нейтронов из активной зоны путем их отражения обратно в зону. Материалы отражения должны обладать малой вероятностью захвата нейтронов, но большой вероятностью их упругого рассеивания;

3) теплоноситель – используется для отвода тепла из активной зоны;

4) система управления и регулирования цепной реакции ;

5) система биологической защиты (радиационной защиты), предохраняющая обслуживающий персонал от вредного действия ионизирующего излучения.

В ядерных реакторах на медленных нейтронах активная зона, кроме ядерного топлива, содержит замедлитель быстрых нейтронов, образующихся при цепной реакции деления атомных ядер. Применяют замедлители (графит), а также органические жидкости и воду, которые одновременно могут служить и теплоносителем. Если замедлителя в активной зоне нет, то основная часть деления ядер происходит под влиянием быстрых нейтронов с энергией больше 10 кэВ. Реактор без замедлителя – реактор на быстрых нейтронах – может стать критическим лишь при использовании природного урана, обогащенного изотопом U до концентрации около 10%.

В активной зоне реактора на медленных нейтронах расположены тепловыделяющие элементы, содержащие смесь U и U и замедлитель, в котором нейтроны замедляются до энергии около 1 эВ. Тепловыделяющие элементы (ТВЭЛы) представляют собой блоки из делящегося материала, заключенные в герметическую оболочку, слабо поглощающую нейтроны. За счет энергии деления тепловыделяющие элементы разогреваются и отражают энергию теплоносителю, который циркулирует в каналах.

К ТВЭЛам предъявляются высокие технические требования: простота конструкции; механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности; малое поглощение нейтронов конструкционным материалом ТВЭЛа и минимум конструкционного материала в активной зоне; отсутствие взаимодействия ядерного топлива и продуктов деления с оболочкой ТВЭЛов, теплоносителем и замедлителем при рабочих температурах. Геометрическая форма ТВЭЛа должна обеспечить требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности ТВЭЛа, а также гарантировать большую глубину выгорания ядерного топлива и высокую степень удержания продуктов деления. ТВЭЛы должны обладать радиационной стойкостью, простотой и экономичностью регенерации ядерного топлива и низкой стоимостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций.


В целях безопасности надежная герметичность оболочек ТВЭЛов должна сохраняться в течение всего срока работы активной зоны
(3–5 лет) и последующего хранения отработавших ТВЭЛов до отправки на переработку (1–3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения ТВЭЛов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего его расчетного срока службы не превышались установленные пределы повреждения ТВЭЛов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителя, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных ТВЭЛов. Различают два вида таких нарушений: образование микротрещин, через которые газообразные продукты деления выходят из ТВЭЛа в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.

Управление цепной реакцией осуществляется специальными управляющими стержнями, изготовленными из материалов, сильно поглощающих нейтроны (например, бор, кадмий). Изменяя количество и глубину погружения управляющих стержней, можно регулировать нейтронные потоки, а следовательно, интенсивность цепной реакции и выработку энергии.

В настоящее время разработано большое количество различных моделей ядерных реакторов, которые различаются по виду ядерного топлива (уран, плутоний), по химическому составу ядерного топлива (уран, диоксид урана), по виду теплоносителя (вода, тяжелая вода, органические растворители и другие), по виду замедлителя (графит, вода, бериллий).

Реакторы, в которых деление ядер производится в основном нейтронами с энергией больше 0,5 МэВ, называются реакторами на быстрых нейтронах . Реакторы, в которых большинство делений происходит в результате поглощения ядрами делящихся изотопов промежуточных нейтронов, называются реакторами на промежуточных (резонансных) нейтронах .

Наиболее распространенными на АЭС являются реакторы большой мощности канальные (РБМК) и (ВВЭР).

Активная зона РБМК диаметром 11,8 м и высотой 7 м представляет собой цилиндрическую кладку, состоящую из графитовых блоков – замедлитель. В каждого блоке имеется отверстие для технологического канала (всего 1700).

В каждом канале установлено два ТВЭЛа, имеющих форму полых трубок диаметром 13,5 мм и длиной 3,5 м, стенки которых толщиной 0,9 мм выполнены из циркониевого сплава. ТВЭЛы заполнены таблетками из диоксида урана, обогащенного до 2% U. Общая масса топлива в активной зоне РБМК составляет 190 т. В процессе работы реактора ТВЭЛы охлаждаются проходящими по технологическим каналам потоками теплоносителя (вода).

Принципиальная схема реактора РБМК-1000 показана на рис. 7.

Рис. 7. Реактор большой мощности канальный на тепловых нейтронах

1 - турбогенератор; 2 - стержни управления; 3 - барабаны-сепараторы;

4 - конденсаторы; 5 – графитовый замедлитель; 6 – активная зона;

7 - твэлы; 8 – защитная оболочка из бетона

Для управления цепной ядерной реакцией, происходящей в ТВЭЛах, в специальные каналы вводятся регулирующие и управляющие стержни, выполненные из кадмия или бора, которые хорошо поглощают нейтроны. Стержни свободно перемещаются по специальным каналам. Глубина погружения регулирующего стержня определяет степень поглощения нейтронов. По периферии активной зоны расположен слой отражателя нейтронов – те же графитовые блоки, но без каналов.

Графитовая кладка окружена цилиндрическим стальным баком с водой, который предназначен для биологической защиты от нейтронов и гамма-излучений. Кроме того, реактор размещается в бетонной шахте размером 21,6´21,6´25,5 м.

Таким образом, основными элементами РБМК являются тепловыделяющие элементы, заполненные ядерным топливом, заменитель и отражатель нейтронов, теплоноситель и регулирующие стержни, служащие для управления развитием ядерной реакции деления.

Принцип работы АЭС с реактором типа РБМК состоит в следующем. Появляющиеся в результате деления ядер U вторичные быстрые нейтроны выходят из ТВЭЛов и попадают в графитовый замедлитель. В результате прохождения по замедлителю они теряют значительную часть своей энергии и, уже являясь тепловыми, вновь попадают в один из соседних ТВЭЛов и участвуют в дальнейшем процессе деления ядер U. Энергия цепной ядерной реакции выделяется в виде кинетической энергии «осколков» (80%), вторичных нейтронов, альфа-, бета-частиц и гамма-квантов, в результате чего происходит разогрев ТВЭЛов и графитовой кладки замедлителя. Теплоноситель, в качестве которого используется вода, двигаясь в технологических каналах снизу вверх под давлением около 7 МПа, охлаждает активную зону реактора. В результате происходит нагрев теплоносителя до температуры 285°С на выходе из реактора.

Далее пароводяная смесь транспортируется по трубопроводам в сепаратор, служащий для отделения воды от пара. Отсепарированный насыщенный пар под давлением попадает на лопасти турбины, связанной с генератором электрического тока.

Отработанный пар направляется в технологический конденсатор, конденсируется, смешивается с теплоносителем, поступающим из сепаратора, и под давлением, создаваемым циркуляционным насосом, вновь поступает в технологические каналы активной зоны реактора.

Преимущество таких реакторов являются возможность замены ТВЭЛов без остановки реактора и возможность поканального контроля состояния реактора. К недостаткам реакторов РМБК следует отнести низкую стабильность работы на малых уровнях мощности, недостаточное быстродействие системы управления защиты и использование одноконтурной схемы, в которой имеется реальная возможность радиоактивного загрязнения турбогенератора.

Среди реакторов, работающих на тепловых нейтронах, наиболее широкое распространение во многих странах мира получили водо-водяные энергетические реакторы .

Реакторы этого типа состоят из следующих основных конструктивных элементов: корпуса с крышкой, в котором размещаются ТВЭЛы, собранные в кассеты; органы управления и защиты, тепловой экран, выполняющий одновременно роль отражателя нейтронов и биологической защиты (рис. 8).

Корпус ВВЭР представляет собой вертикальный толстостенный цилиндр из высокопрочной легированной стали высотой 12–25 м и диаметром 3–8 м (в зависимости от мощности реактора). Сверху корпус реактора герметично закрывается массивной стальной сферической крышкой.

Рис. 8. Принципиальная схема АЭС ВВЭР-1000:

1 – тепловой экран; 2 - корпус; 3 – крышка; 4 - трубопроводы первого контура;

5 - трубопроводы второго контура; 6 - паровая турбина; 7 - генератор;

8 - технологический конденсатор; 9 , 11 – циркуляционные насосы;

10 - парогенератор; 12 - твэлы

Корпус реактора установлен в бетонной оболочке, являющейся одним из барьеров радиационной защиты. Принцип работы АЭС с серийным водо-водяным реактором электрической мощностью 440 МВт (ВВЭР-440) состоит в следующем. Теплоотвод от активной зоны ядерного реактора осуществляется по двухконтурной схеме. Теплоноситель (вода) первого контура, имеющий температуру 270°С, по трубопроводу подводится к активной зоне реактора под высоким давлением порядка 12,5 МПа, поддерживаемым циркуляционным насосом. Проходя по активной зоне, теплоноситель нагревается до 300°С (высокое давление в контуре не позволяет воде закипеть) и дальше поступает в парогенератор.

В парогенераторе теплоноситель первого контура отдает свое тепло так называемой питательной воде второго контура, находящейся под более низким давлением (приблизительно 4,4 МПа). Поэтому вода второго контура закипает и превращается в нерадиоактивный пар, который по пароводу подается на паровую турбину, связанную с генератором электрического тока. Отработанный пар охлаждается в технологическом конденсаторе, и под действием питательного насоса конденсат вновь поступает в парогенератор. Двухконтурная схема теплоотвода обеспечивает радиационную безопасность АЭС.

Перспективы развития ядерной энергетики в настоящее время связывают со строительством реакторов на быстрых нейтронах. Также реакторы наряду с выработкой электроэнергии позволяют осуществлять расширенное воспроизводство ядерного топлива, вовлекая в топливный цикл не только делящиеся тепловыми нейтронами U или Pu, но и U и Th (его содержание в земной коре примерно в 4 раза выше, чем природного урана).

В активной зоне реактора на быстрых нейтронах размещаются ТВЭЛы с высокообогащенным топливом. Активная зона окружается зоной воспроизводства, состоящей из ТВЭЛов, содержащих топливное сырье (обедненный уран, торий). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Особым достоинством быстрых реакторов является возможность организации в них расширенного воспроизводства ядерного топлива, т. е. одновременно с выработкой энергии можно производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

В активной зоне реактора на быстрых нейтронах отсутствует замедлитель, в связи с этим объем активной зоны реактора во много раз меньше, чем в РБМК или ВВЭР, и составляет примерно 2 м 3 . В качестве ядерного топлива в реакторах используется искусственно полученный Pu или высокообогащенный (более 20%) уран.

В активной зоне реактора БН-600 размещается 370 топливных сборок, в каждой из которых содержится по 127 ТВЭЛов и 27 стержней системы управления и аварийной защиты.

Для отвода тепловой энергии в активной зоне реактора БН-600 используется трехконтурная технологическая схема (рис. 9).

В первом и втором контурах в качестве теплоносителя используется жидкий натрий, температура плавления которого составляет 98°С, он обладает малой поглощающей и замедляющей способностью нейтронов.

Жидкий натрий первого контура на выходе из реактора имеет температуру 550°С и поступает в промежуточный теплообменник. Там он отдает теплоту теплоносителю второго контура, в качестве которого тоже используется жидкий натрий. Теплоноситель второго контура поступает в парогенератор, где происходит превращение в пар воды, являющейся теплоносителем третьего циркуляционного контура. Вырабатываемый в парогенераторе пар под давлением 14 МПа поступает в турбину электрогенератора. Отработанный пар после охлаждения в технологическом конденсаторе направляется насосом опять в парогенератор. Таким образом, схему теплоотвода на АЭС с реактором БН-600 составляют один радиоактивный и два нерадиоактивных контура. Время работы генератора БН-600 между перегрузками топлива составляет 150 суток.

Рис. 9. Технологическая схема АЭС с реактором на быстрых нейтронах:

1 – твэлы активной зоны; 2 – твэлы зоны воспроизводства; 3 – корпус реактора;

4 – бетонный корпус реактора; 5 – теплоноситель первого контура;
6 – теплоноситель второго контура; 7 – теплоноситель третьего контура;

8 – паровая турбина; 9 – генератор; 10 – технологический конденсатор;

11 – парогенератор; 12 – промежуточный теплообменник;

13 – циркуляционный насос

При эксплуатации АЭС, кроме проблем, связанных с захоро-нением высокорадиоактивных отходов ядерный топливный цикл (ЯТЦ), возникают дополнительные проблемы, которые обусловлены сроком службы ядерных реакторов (20–40 лет). После окончания этого срока службы реакторы необходимо выводить из эксплуатации, а из активной зоны их необходимо извлекать ядерное топливо, теплоноситель. Сам реактор консервируют или демонтируют. Опыт демонтажа отработанных ядерных реакторов в мире очень небольшой.


1. Общие сведения об атоме и атомном ядре. Явление радиоактивности.

2. Основной закон радиоактивного распада. Активность и единицы ее измерения.

3. Деление тяжелых ядер и цепная реакция деления.

4. Какой принцип работы ядерного реактора и их характеристики?

5. Приведите основные характеристики реакторов ВВЭР-1000 и РБМК-1000. В чем их отличие?

6. Основные характеристики реакторов на быстрых нейтронах БН-600.

ЛЕКЦИЯ 4. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ,
ИХ ХАРАКТЕРИСТИКИ И ВЗАИМОДЕЙСТВИЕ

Когда нам сообщают, к примеру, что «построена электростанция на солнечных панелях мощностью 1200 МВт», это вовсе не значит, что эта СЭС даст столько же электроэнергии, сколько ее дает атомный реактор ВВЭР-1200. Солнечные панели не могут работать ночью – следовательно, если усреднить по временам года, половину суток они простаивают, а это уже уменьшает КИУМ вдвое. Солнечные панели, даже самых новых разновидностей, в пасмурную погоду работают значительно хуже, и средние величины тут тоже не радуют – тучки с дождичками да снегом, туманы уменьшают КИУМ еще в два раза. «СЭС мощностью 1200 МВт» звучит звонко, но надо держать в голове цифру 25% – эти мощности технологически могут быть использованы только на ¼.

Солнечные панели, в отличие от АЭС, работают не 60-80 лет, а 3-4 года, утрачивая возможность преобразования солнечного света в электрический ток. Можно, конечно, говорить о некоем «удешевлении генерации», но это ведь откровенное лукавство. Солнечные электростанции требуют большие участки территории, проблемами утилизации отработавших свой срок солнечных панелей пока никто нигде толком не занимался. Утилизация потребует разработки достаточно серьезных технологий, экологию вряд ли радующих. Если говорить о электростанциях, использующих ветер, то слова придется использовать почти те же, поскольку и в этом случае КИУМ составляет около четверти установленной мощности. То вместо ветра штиль, то ветер такой силы, что вынуждает остановить «мельницы», поскольку угрожает целости их конструкции.

Погодные капризы энергетики на ВИЭ

Никуда не деться и от второй «ахиллесовой пяты» ВИЭ. Электростанции на их основе работают не тогда, когда вырабатываемая ими электроэнергия необходима потребителям, а тогда, когда на улице солнечная погода или ветер подходящей силы. Да, такие электростанции могут вырабатывать электроэнергию, но что делать, если сети электропередач не способны ее принять? Подул ночью ветер, можно включать ветровые ЭС (электростанции), но ночью и мы с вами спим, и предприятия не работают. Да, такие традиционные ЭС на возобновляемых ресурсах, как ГЭС, с этой проблемой умеют справляться, увеличивая холостой сброс воды («мимо турбины») или попросту накапливая запас воды в своих водохранилищах, но в случае паводков и им приходится не так просто. А для ЭС на солнце и ветре технологии аккумулирования энергии не настолько развиты, чтобы выработанную электроэнергию «припасти» на тот момент, когда вырастет потребление в сети.

Есть и обратная сторона медали. Будет ли инвестор вкладываться в строительство, допустим, газовой ЭС в регионе, где в массовом количестве установлены солнечные панели? Деньги-то вложенные как окупать, если половину времени «твоя» электростанция не работает? Срок окупаемости, банковские проценты… «Ай, да зачем мне такая головная боль!» – заявляет осторожничающий капиталист и ничего не строит. А у нас – погодная аномалия, дожди на неделю зарядили при полном штиле. И крики возмущенных потребителей, вынужденных запускать дизель-генераторы на лужайках перед домом, сливаются в гул. Инвесторов пинками строить тепловые ЭС не заставишь, без льгот и субсидий со стороны государства они рисковать не будут. А это в любом случае становится дополнительной нагрузкой на государственные бюджеты, равно как и в том случае, если государство, не найдя сговорчивых инвесторов, строит тепловые ЭС самостоятельно.

Нам много рассказывают про то, как много солнечных панелей используют в Германии, не так ли? Но при этом в стране растет количество электростанций, работающих на местном буром угле, нещадно выбрасывая в атмосферу тот самый «цэ о два», с которым надо бороться, выполняя условия Парижского соглашения 2015 года. «Бурые электростанции» вынуждены строить федеральное правительство Германии, органы управления федеральными землями – у них нет другого выхода, в противном случае те самые поклонники «зеленой энергетики» выйдут на улицы с протестами из-за того, что в их розетках нету тока, что по вечерам приходится сидеть при лучине.

Утрируем, конечно – но только для того, чтобы очевиднее была абсурдность ситуации. Если генерация электроэнергии в буквальном смысле этого слова зависит от погоды, то получается, что за счет солнца и ветра удовлетворять базовые потребности в электроэнергии технически невозможно. Да, теоретически можно опутать всю Европу с Африкой дополнительными ЛЭП (линиями электропередач), чтобы ток из солнечной Сахары пришел в дома, стоящие на хмуром побережье Северного моря, но это стоит уже совсем невероятных денег, срок окупаемости которых близится к бесконечности. Рядом с каждой СЭС держать ЭС на угле или на газе? Повторимся, но сжигание углеводородных энергетических ресурсов на электростанциях не дает возможности выполнять в полном объеме положения Парижского соглашения о снижении выбросов СО 2 .

АЭС как основа «зеленой энергетики»

Тупик? Для тех стран, которые решили избавляться от атомной энергетики – именно он. Конечно, выход из него ищут. Усовершенствуют системы сжигания угля, газа, отказываются от ЭС на мазуте, прилагают усилия для повышения КПД топок, парогенераторов, котлов, наращивают усилия по применению энергосберегающих технологий. Это хорошо, это полезно, это обязательно надо делать. Но Россия и ее Росатом предлагают куда более радикальный вариант – строить АЭС.

Строительство АЭС, Фото: rusatom-overseas.com

Вам такой способ кажется парадоксальным? Давайте посмотрим на него с точки зрения логики. Во первых, выбросы СО 2 из атомных реакторов отсутствуют как таковые – нет в них никаких химических реакций, не ревет в них буйно пламя. Следовательно, выполнение условий Парижского соглашения «имеет место быть». Второй момент – масштаб генерации электроэнергии на АЭС. В большинстве случаев на площадках атомной электростанции стоят, как минимум, два, а то и все четыре реактора, их совокупная установленная мощность огромна, а КИУМ стабильно превышает 80%. Эта «прорва» электроэнергии достаточна, чтобы удовлетворить потребности не одного города, а целого региона. Вот только атомные реакторы «не любят», когда меняют их мощность. Извините, сейчас будет немножко технических подробностей, чтобы было понятнее, что мы имеем в виду.

Системы управления и защиты атомных реакторов

Принцип работы энергетического реактора схематично не так уж и сложен. Энергия атомных ядер превращается в тепловую энергию теплоносителя, тепловая энергия превращается в механическую энергию ротора электрогенератора, та, в свою очередь, преобразуется в энергию электрическую.

Атомная – тепловая – механическая – электрическая, такой вот своеобразный цикл энергий.

В конечном итоге, электрическая мощность реактора зависит от мощности контролируемой, управляемой атомной цепной реакции деления ядерного топлива. Подчеркиваем – контролируемой и управляемой. Что бывает, если цепная реакция из-под контроля и управления выходит, мы, к огромному сожалению, хорошо знаем с 1986 года.

Как контролируют и управляют течением цепной реакции, что необходимо делать для того, чтобы реакция не распространилась сразу на весь объем урана, содержащегося в «атомном котле»? Вспоминаем школьные прописные истины, не вдаваясь в научные подробности ядерной физики – этого будет вполне достаточно.

Что такое цепная реакция «на пальцах», если кто-то подзабыл: прилетел один нейтрон, выбил два нейтрона, два нейтрона выбили четыре и так далее. Если число этих самых свободных нейтронов становится слишком большим, реакция деления распространится на весь объем урана, грозя перерасти в «большой ба-бах». Да, конечно, ядерного взрыва не состоится, для него необходимо, чтобы содержание изотопа урана-235 в топливе превышало 60%, а в энергетических реакторах обогащение топлива не превышает 5%. Но и без атомного взрыва проблем будет выше головы. Перегреется теплоноситель, сверхкритично вырастет его давление в трубопроводах, после их разрыва может нарушиться целостность тепловыделяющих сборок и все радиоактивные вещества вырвутся за пределы реактора, безумно загрязнив прилегающие территории, ворвутся в атмосферу. Впрочем, подробности катастрофы Чернобыльской АЭС известны всем, не будем повторяться.

Авария на Чернобыльской АЭС, Фото: meduza.io

Одна из основных составляющих любого атомного реактора – СУЗ, система управления и защиты. Свободных нейтронов не должно быть больше жестко рассчитанной величины, но их не должно быть и меньше этой величины – это приведет к затуханию цепной реакции, АЭС просто «встанет». Внутри реактора должно находиться вещество, которое поглощает лишние нейтроны, но в том количестве, которое позволяет продолжаться цепной реакции. Физики-атомщики давно вычислили, какое вещество делает это лучше всего – изотоп бора-10, поэтому систему управления и защиты называют еще и попросту «борной».

Стержни с бором включены в конструкцию реакторов с графитовым и водным замедлителем, для них имеются такие же технологические каналы, как и для ТВЭЛ-ов, тепловыделяющих элементов. Счетчики нейтронов в реакторе работают непрерывно, автоматически отдавая команду системе, управляющей стержнями с бором, та перемещает эти стержни, погружая или извлекая их из реактора. При начале топливной сессии урана в реакторе много – борные стержни погружены глубже. Идет время, выгорает уран, и борные стержни начинают постепенно извлекать – количество свободных нейтронов должно оставаться постоянным. Да, заметим, что есть еще и «аварийные» борные стержни, «висящие» над реактором. В случае нарушений, потенциально способных вывести цепную реакцию из-под контроля, они погружаются в реактор мгновенно, на корню убивая цепную реакцию. Прорвало трубопровод, произошла утечка теплоносителя – это риск перегрева, аварийные борные стержни срабатывают мгновенно. Остановим реакцию и потихоньку разберемся, что именно произошло и как устранить проблему, а риск должен быть сведен к нулю.

Нейтроны бывают разные, а бор у нас один

Простая логика, как видите, показывает, что увеличение и уменьшение энергетической мощности атомного реактора – «маневр по мощности», как говорят энергетики – очень непростая работа, в основе которой лежит ядерная физика, квантовая механика. Еще чуточку «вглубь процесса», не сильно далеко, не бойтесь. При любой реакции деления уранового топлива образуются вторичные свободные нейтроны – те самые, которые в школьной формуле «выбил два нейтрона». В энергетическом реакторе два вторичных нейтрона – это слишком много, для контролируемости и управляемости реакции нужен коэффициент 1,02. Прилетело 100 нейтронов, выбило 200 нейтронов, и вот из этих 200 вторичных нейтронов 98 должен «скушать», поглотить тот самый бор-10. Подавляет бор излишнюю активность, это мы вам точно говорим.

Но помните, что бывает, если ребенка ведром мороженого накормить – он с удовольствием скушает первые 5-6 порций, а потом уйдет прочь, поскольку «больше не влезает». Человеки из атомов состоят, потому и характер у атомов ничем особо от нашего не отличается. Бор-10 может кушать нейтроны, но не бесконечное же количество, обязательно настанет то самое «больше не влезает». Бородатые в белых халатах на АЭС подозревают, что многие догадываются, что в душе атомщики остаются любопытными детьми, поэтому стараются использовать как можно более «взрослую» лексику. Бор в их лексиконе не «обожрался нейтронами», а «выгорел» – это звучит намного солиднее, согласитесь. Так или иначе, но каждое требование электросетей «приглушить реактор» приводит к более интенсивному выгоранию системы борной защиты и управления, вызывает дополнительные сложности.

Макет реактора на «быстрых» нейтронах, Фото: topwar.ru

С коэффициентом 1,02 тоже не все так просто, поскольку кроме мгновенных вторичных нейтронов, которые возникают сразу после реакции деления, есть еще и запаздывающие. Атом урана после деления разваливается на части, и вот из этих осколков тоже вылетают нейтроны, но спустя несколько микросекунд. Их немного по сравнению с мгновенными, всего около 1%, но при коэффициенте 1,02 и они весьма важны, ведь 1,02 – это прибавка всего-то в 2%. Следовательно, расчет количества бора нужно выполнять с ювелирной точностью, постоянно балансируя на тонкой грани «выход реакции из-под контроля – внеплановая остановка реактора». Потому в ответ на каждое требование «подай газку!» или «тормози, чего так раскочегарился!» начинается цепная реакция дежурной смены АЭС, когда каждый атомщик из ее состава предлагает большее количество идиоматических выражений…

И еще раз об АЭС как об основе «зеленой энергетики»

Вот теперь вернемся к тому, на чем остановились – на большой мощности генерации электроэнергии, на большой территории, которую обслуживает АЭС. Чем больше территория – тем больше возможностей разместить на ней ЭС, работающих на ВИЭ. Чем больше таких ЭС – тем выше вероятность того, что пиковое потребление совпадет с периодом их наибольшей генерации. Вот оттуда придет электроэнергия солнечных панелей, вот отсюда – энергия ветра, вот там о борт удачно ударит приливная волна, и все вместе они сгладят пиковую нагрузку, позволят атомщикам на АЭС спокойно пить чай, поглядывая на монотонно, без перебоев работающие счетчики нейтронов.

Возобновляемые источники энергии, hsto.org

Чем спокойнее обстановка на АЭС – тем толще могут становиться бюргеры, поскольку без проблем смогут и дальше греть на гриле свои колбаски. Как видите, ничего парадоксального в сочетании ЭС на ВИЭ и атомной генерации как базовой нет, все ровно наоборот – такое сочетание, если уж мир всерьез решил бороться с выбросами СО 2 , и есть оптимальный выход из ситуации, ни в коей мере не перечеркивая всех вариантов модернизаций и усовершенствований тепловых ЭС, о которых мы говорили.

Продолжая «стиль кенгуру», предлагаем «перепрыгнуть» на самое первое предложение этой статьи – о конечности любых традиционных энергетических ресурсов на планете Земля. В силу этого магистральное, стратегическое направление развития энергетики – покорение термоядерной реакции, однако технология ее невероятно сложна, требует слаженных, совместных усилий ученых и конструкторов всех стран, серьезных вложений и многих лет упорного труда. Сколько понадобится времени, сейчас можно гадать на кофейной гуще или внутренностях птиц, а закладываться нужно, разумеется, на самый пессимистический сценарий. Нужно искать топливо, которое способно обеспечить ту самую базовую генерацию на как можно более длительный срок. Нефти и газа как бы полным полно, но и население планеты растет, и к уровню потребления такому же, как в странах «золотого миллиарда» стремятся новые и новые царства-государства. По прикидкам геологов, ископаемого углеводородного топлива на Земле осталось годиков на 100-150, если только потребление не будет расти более быстрыми темпами, чем в нынешнее время. А оно, похоже, так и получится, поскольку население развивающихся стран жаждет повышения уровня комфорта…

Реакторы на быстрых нейтронах

Предлагаемый российским атомным проектом выход из сложившейся ситуации известен, это – замыкание ядерного топливного цикла за счет вовлечения в процесс ядерных реакторов-бридеров, реакторов на быстрых нейтронах. Бридер – это реактор, в котором в результате топливной сессии ядерного топлива на выходе получается больше, чем его изначально загрузили, реактор-размножитель. Те, кто еще не совсем забыл курс школьной физики, вполне могут задать вопрос: простите, а как же закон сохранения массы? Ответ прост – да никак, поскольку в ядерном реакторе и процессы ядерные, и закон сохранения массы не действует в классическом виде.

Альберт Эйнштейн больше сотни лет назад в специальной теории относительности связал воедино массу и энергию, и в атомных реакторах эта теория является сугубой практикой. Сохраняется общее количество энергии, а про сохранение общего количества массы в данном случае речи не идет. В атомах ядерного топлива «спит» огромный запас энергии, высвобождающийся в результаты реакции деления, часть этого запаса мы используем себе во благо, а другая часть удивительным образом превращает атомы урана-238 в смесь атомов изотопов плутония. Реакторы на быстрых нейтронах, и только они – позволяют превратить в топливный ресурс основной компонент урановой руды – уран-238. Накопленные в процессе работы АЭС на тепловых нейтронах запасы обедненного по содержанию урана-235, неиспользуемого в тепловых атомных реакторах урана-238, составляют сотни тысяч тонн, которые уже не надо добывать из шахт, которые уже не надо «вышелушивать» от пустой породы – его на заводах по обогащению урана неимоверное количество.

МОКС-топливо «на пальцах»

Теоретически понятно, но не до конца, потому попробуем снова «на пальцах». Само название «МОКС-топливо» – всего лишь буквами славянского алфавита записанная англоязычная аббревиатура, которая пишется как МОХ. Расшифровка – Mixed-Oxide fuel, вольный перевод – «топливо из микста оксидов». В основном под этим термином понимают микст оксида плутония и оксида урана, но это только в основном. Поскольку наши уважаемые американские партнеры освоить технологию производства МОКС-топлива из оружейного плутония оказались не в силах, отказалась от этого варианта и Россия. Но построенный нами завод заранее был рассчитан как универсальный – он способен производить МОКС-топливо и из ОЯТ тепловых реакторов. Если кто-то читал статьи Геоэнергетики.ru по этому поводу, то помнит, что изотопы плутония 239, 240 и 241 в ОЯТ уже «замикстованы» – их там по 1/3 каждого, так что в МОКС-топливе, созданном из ОЯТ, присутствует микст плутония, эдакий вот микст внутри микста.

Вторая же часть основного микста – обедненный уран. Утрируя: берем микст оксида плутония, добытого из ОЯТ при помощи ПУРЕКС-процесса, досыпаем безхозный уран-238 и получаем МОКС-топливо. Уран-238 при этом в цепной реакции не участвует, «горит» только микст изотопов плутония. Но уран-238 не просто «присутствует» – изредка, нехотя, время от времени он принимает внутрь себя один нейтрон, превращаясь в плутоний-239. Часть этого нового плутония тут же и «сгорает», а часть просто не успевает этого сделать до окончания топливной сессии. Вот, собственно, и весь секрет.

Цифры условны, взяты с потолка, просто для наглядности. В начальном составе МОКС-топлива 100 кило оксида плутония и 900 кило урана-238. Пока «горел» плутоний, 300 кило урана-238 превратились в дополнительный плутоний, из которого 150 кило тут же и «сгорело», а 150 кило не успело. Вытащили ТВС, «вытряхнули» из него плутоний, но его оказалось на 50 кило больше, чем было изначально. Ну, или вот то же самое, но на дровах: кинул в топку 2 полена, печка у тебя всю ночь грела, а утром ты из нее вытащил … три полена. Из 900 кг бесполезного, неучаствующего в цепной реакции урана-238 при его использовании в составе МОКС-топлива получили 150 кило топлива, которое с пользой для нас тут же «прогорело», да еще и 150 кило осталось для дальнейшего использования. А этого отвального, бесполезного урана-238 стало на 300 кило меньше, что тоже не плохо.

Реальные соотношения обедненного урана-238 и плутония в МОКС-топливе, разумеется, другие, поскольку при наличии в МОКС-топливе 7% плутония смесь ведет себя почти так же, как обычное урановое топливо с обогащением по урану-235 около 5%. Но придуманные нами цифры показывают главный принцип МОКС-топлива – бесполезный уран-238 превращается в ядерное топливо, его огромные запасы становятся энергетическим ресурсом. По приблизительным подсчетам, если предположить, что на Земле прекратить использовать углеводородное топливо для производства электроэнергии и перейти только на использование урана-238, нам его хватит на 2’500 – 3’000 лет. Вполне приличный запас времени, чтобы успеть освоить технологию управляемого термоядерного синтеза.

МОКС-топливо позволяет одновременно решить и еще одну проблему – уменьшить запасы накопленного во всех странах-участницах «атомного клуба» ОЯТ, уменьшить количество накопленных в ОЯТ радиоактивных отходов. Тут дело не в неких чудесных свойствах МОКС-топлива, все прозаичнее. Если ОЯТ не использовать, а пытаться отправить его на вечное геологическое захоронение, то вместе с ним придется отправлять на захоронение и все высокоактивные отходы, которые в нем содержатся. А вот применение технологий переработки ОЯТ с целью извлечения из него плутония волей-неволей вынуждает нас сокращать объемы этих радиоактивных отходов. В борьбе за использование плутония мы просто таки вынуждены уничтожать радиоактивные отходы, но при этом процесс такого уничтожения становится куда как менее затратен – ведь плутоний идет в дело.

МОКС-топливо – дорогое удовольствие, которое нужно сделать дешевым

При этом производство МОКС-топлива в России началось совсем недавно, даже у самого нового, самого технологичного реактора на быстрых нейтронах – БН-800, переход на 100%-ное использование МОКС-топлива происходит в режиме онлайн, тоже еще не завершен. Совершенно естественно, что в настоящее время производство МОКС-топлива обходится дороже, чем производство традиционного уранового. Удешевление производства, как и в любой другой отрасли промышленности, возможно, прежде всего, за счет производства массового, «конвейерного».

Следовательно, для того, чтобы замыкание ядерного топливного цикла было целесообразно с экономической точки зрения, в России нужно большее количество реакторов на быстрых нейтронах, это должно стать стратегической линией развития атомной энергетики. Больше реакторов – хороших и разных!

При этом необходимо не выпускать из поля зрения и вторую возможность использования МОКС-топлива – в качестве топлива для реакторов ВВЭР. Реакторы на быстрых нейтронах создают такое дополнительное количество плутония, которое они сами использовать уже толком и не могут – им столько просто не надо, плутония хватит и для реакторов ВВЭР. Мы выше уже писали, что МОКС-топливо, в котором на 93% обедненного урана-238 приходится 7% плутония, ведет себя почти так же, как обычное урановое топливо. Да вот только применение МОКС-топлива в тепловых реакторах приводит к снижению эффективности применяемых в ВВЭР поглотителей нейтронов. Причина этого заключается в том, что бор-10 гораздо хуже поглощает быстрые нейтроны – таковы его физические особенности, на которые мы никак повлиять не можем. Такая же проблема возникает и с аварийными борными стержнями, предназначение которых – мгновенная остановка цепной реакции в случае нештатных ситуаций.

Разумный выход – снижение количества МОКС-топлива в ВВЭР до 30-50%, что уже реализуется на части легководных реакторов Франции, Японии и других стран. Но и в этом случае может потребоваться модернизация борной системы и выполнение всех необходимых обоснований безопасности, сотрудничество с надзорными органами МАГАТЭ для получения лицензий на использование МОКС-топлива в тепловых реакторах. Или, если коротко – количество борных стержней придется увеличить, причем и тех, которые предназначены для управления, и тех, что «припасены» на случай ЧП. Но только освоение этих технологий позволит перейти к массовому производству этого вида топлива, к удешевлению его производства. Одновременно это позволит значительно более активно решать и проблемы уменьшения количества ОЯТ, более активно использовать запасы обедненного урана.

Перспективы близки, но дорога не проста

Освоение этой технологии в сочетании со строительством реакторов-бридеров энергетического плутония – реакторов на быстрых нейтронах позволит России не только замкнуть ядерный топливный цикл, но и сделать его экономически привлекательным. Большие перспективы имеются и у использования СНУП-топлива (смешанное нитридное уран-плутониевое топливо). Экспериментальные ТВС, прошедшие в 2016 году облучение на реакторе БН-600, уже доказали свою эффективность как при реакторных испытаниях, так и по итогам послереакторных исследований. Полученные результаты дают для продолжения работ по обоснованию использования СНУП-топлива при создании реакторной установки БРЕСТ-300 и пристанционных модулей по производству СНУП-топлива опытно-демонстрационного комплекса, строящегося в Северске. БРЕСТ-300 позволит продолжить отработку технологий, необходимых для полного замыкания ядерного топливного цикла, обеспечить более полное решение проблем ОЯТ и РАО, реализовать идеологию «вернуть природе столько же радиоактивности, сколько ее было извлечено». Реактор БРЕСТ-300, как и реакторы БН – реактор на быстрых нейтронах, что только подчеркивает правильность стратегического направления развития атомной энергетики – сочетание водноводяных реакторов и реакторов на быстрых нейтронах.

Освоение технологии 100%-ного использования МОКС-топлива на БН-800 обеспечивает и возможность создания реакторов БН-1200 – не только более мощных, но и экономически более выгодных. Решение о создании в России реактора БН-1200 принято, а это означает, что темп научно-исследовательских работы атомным специалистам придется только увеличивать, и создание МБИР, намеченное на 2020 год, может существенно помочь в решении всех проблем, в освоении технологии полного замыкания топливного ядерного цикла. Россия была и остается единственно страной, создавшей энергетические реакторы на быстрых нейтронах, обеспечив наше мировое лидерство в этом важнейшем направлении атомной энергетики.

Разумеется, все рассказанное – всего лишь первое знакомство с особенностями реакторов на быстрых нейтронах, но мы постараемся продолжить, поскольку тема эта важная и, как нам кажется, достаточно интересная.

Вконтакте

Академик Ф. Митенков, научный руководитель ФГУП "Опытное конструкторское бюро машиностроения" им. И. И. Африкантова (г. Нижний Новгород).

Академик Федор Михайлович Митенков был удостоен премии "Глобальная энергия" 2004 года за разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах (см. "Наука и жизнь" №8, 2004 г.). Исследования, проведенные лауреатом, и их практическое воплощение в действующие реакторные установки БН-350, БН-600, строящуюся БН-800 и проектируемую БН-1800, открывают человечеству новое, перспективное направление развития атомной энергетики.

Белоярская АЭС с реактором БН-600.

Академик Ф. М. Митенков на церемонии вручения премии "Глобальная энергия" в июне 2004 года.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Принципиальная схема реактора на быстрых нейтронах БН-350.

Принципиальная схема быстрого энергетического реактора БН-600.

Центральный зал реактора БН-600.

Реактор на быстрых нейтронах БН-800 имеет электрическую мощность 880 МВт, тепловую 1,47 ГВт. При этом его конструкция обеспечивает полную безопасность как при нормальной работе, так и при любой мыслимой аварии.

Наука и жизнь // Иллюстрации

Потребление энергии - важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность и благосостояние населения любой страны. Рост энергопотребления всегда сопровождал развитие человеческого общества, но особенно стремительным он был на протяжении ХХ века: потребление энергии увеличилось почти в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающихся странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь ее наиболее универсального вида - электричества. К середине XXI века прогнозируется удвоение мирового энергопотребления и утроение потребления электроэнергии.

Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, порождает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.

Поэтому в не столь уж отдаленном будущем человечество будет вынуждено перейти на использование альтернативных "безуглеродных" технологий производства энергии, которые позволят в течение длительного времени надежно удовлетворять растущие потребности в энергии без недопустимых экологических последствий. Однако приходится признать, что известные на сегодня возобновляемые источники энергии - ветровой, солнечной, геотермальной, приливной и др. - по своим потенциальным возможностям не могут служить для крупномасштабного энергопроизводства (см. "Наука и жизнь" № 10, 2002 г. - Прим. ред. ). А весьма многообещающая технология управляемого термоядерного синтеза все еще находится на стадии исследований и создания демонстрационного ядерного реактора (см. "Наука и жизнь"№8, 2001 г. ,№9, 2001 г. - Прим. ред. ).

По мнению многих специалистов, к числу которых относится и автор настоящей статьи, реальным энергетическим выбором человечества в XXI веке станет широкое использование ядерной энергии на основе реакторов деления. Атомная энергетика могла бы уже сейчас взять на себя значительную часть прироста мировых потребностей в топливе и энергии. Сегодня она обеспечивает около 6% мирового потребления энергии, в основном электрической, где ее доля составляет около 18% (в России - около 16%).

Для более широкого использования ядерной энергии, с тем чтобы она стала основным базовым источником энергии уже в текущем столетии, необходимы несколько условий. Прежде всего, атомной энергетике нужно отвечать требованиям гарантированной безопасности для населения и окружающей среды, а природным ресурсам для производства ядерного топлива - обеспечивать функционирование "большой" атомной энергетики по меньшей мере в течение нескольких столетий. И, кроме того, по технико-экономические показателям атомная энергетика должна не уступать лучшим источникам энергии на углеводородном топливе.

Посмотрим, насколько современная атомная энергетика отвечает этим требованиям.

О гарантированной безопасности атомной энергетики

Вопросы безопасности атомной энергетики с момента ее зарождения рассматривались и достаточно эффективно решались системно и на научной основе. Однако в период ее становления все-таки возникали аварийные ситуации с недопустимыми выбросами радиоактивности, в том числе две крупномасштабные аварии: на АЭС "Три Майл Айленд" (США) в 1979 году и на Чернобыльской АЭС (СССР) в 1986-м. В связи с этим мировое сообщество ученых и специалистов-атомщиков под эгидой Международного агентства по атомной энергии (МАГАТЭ) разработало рекомендации, соблюдение которых практически исключает недопустимые воздействия на окружающую среду и население при любых физически возможных авариях на АЭС. Они, в частности, предусматривают: если в проекте с достоверностью не обосновано, что расплавление активной зоны реактора исключается, возможность такой аварии необходимо учитывать и доказывать, что предусмотренные в конструкции реактора физические барьеры гарантированно исключают недопустимые последствия для окружающей среды. Рекомендации МАГАТЭ вошли составной частью в национальные нормативы по безопасности атомной энергетики многих стран мира. Некоторые инженерные решения, обеспечивающие безопасность эксплуатации современных реакторов, описаны ниже на примере реакторов БН-600 и БН-800.

Ресурсная база для производства ядерного топлива

Специалистам-атомщикам известно, что существующая технология атомной энергетики, основанная на так называемых "тепловых" ядерных реакторах с водяным или графитовым замедлителем нейтронов, не может обеспечить развития крупномасштабной атомной энергетики. Это связано с низкой эффективностью использования природного урана в таких реакторах: используется только изотоп U-235, содержание которого в природном уране составляет всего лишь 0,72%. Поэтому долговременная стратегия развития "большой" атомной энергетики предполагает переход к прогрессивной технологии замкнутого топливного цикла, основанной на использовании так называемых быстрых ядерных реакторов и переработке топлива, выгруженного из реакторов атомных станций, для последующего возврата в энергетический цикл невыгоревших и вновь образовавшихся делящихся изотопов.

В "быстром" реакторе бoльшую часть актов деления ядерного топлива вызывают быстрые нейтроны с энергией более 0,1 МэВ (отсюда и название "быстрый" реактор). При этом в реакторе происходит деление не только очень редкого изотопа U-235, но и U-238 - основной составляющей природного урана (~99,3%), вероятность деления которого в спектре нейтронов "теплового реактора" очень низка. Принципиально важно, что в "быстром" реакторе при каждом акте деления ядер образуется большее количество нейтронов, которые могут быть использованы для интенсивного превращения U-238 в делящийся изотоп плутония Pu-239. Это превращение происходит в результате ядерной реакции:

Нейтронно-физические особенности быстрого реактора таковы, что процесс образования в нем плутония может иметь характер расширенного воспроизводства, когда в реакторе образуется вторичного плутония больше, чем выгорает первоначально загруженного. Процесс образования избыточного количества делящихся изотопов в ядерном реакторе получил название "бридинг" (от англ. breed - размножать). С этим термином связано принятое в мире название быстрых реакторов с плутониевым топливом - реакторы-бридеры, или размножители.

Практическая реализация процесса бридинга имеет принципиальное значение для будущего атомной энергетики. Дело в том, что такой процесс дает возможность практически полностью использовать природный уран и тем самым почти в сто раз увеличить "выход" энергии из каждой тонны добытого природного урана. Это открывает путь к практически неисчерпаемым топливным ресурсам атомной энергетики на длительную историческую перспективу. Поэтому общепризнано, что использование бридеров - необходимое условие создания и функционирования атомной энергетики большого масштаба.

После того как в конце 1940-х годов была осознана принципиальная возможность создания быстрых реакторов-размножителей, в мире начались интенсивные исследования их нейтронно-физических характеристик и поиски соответствующих инженерных решений. В нашей стране инициатором исследований и разработок по быстрым реакторам стал академик Украинской академии наук Александр Ильич Лейпунский, который до своей кончины в 1972 году был научным руководителем обнинского Физико-энергетического института (ФЭИ).

Инженерные сложности создания быстрых реакторов связаны с целым рядом присущих им особенностей. К их числу относятся: большая энергонапряженность топлива; необходимость обеспечить его интенсивное охлаждение; высокие рабочие температуры теплоносителя, элементов конструкции реактора и оборудования; радиационные повреждения конструкционных материалов, вызванные интенсивным облучением быстрыми нейтронами. Для решения этих новых научно-технических задач и отработки технологии быстрых реакторов потребовалось развитие крупномасштабной научно-исследовательской и опытно-экспериментальной базы с уникальными стендами, а также создание в 1960-1980-е годы целого ряда экспериментальных и демонстрационных энергетических реакторов этого типа в России, США, во Франции, в Великобритании и Германии. Примечательно, что во всех странах в качестве охлаждающей среды - теплоносителя - для быстрых реакторов был выбран натрий, несмотря на то, что он активно реагирует с водой и водяным паром. Решающими достоинствами натрия как теплоносителя стали его исключительно хорошие теплофизические свойства (высокая теплопроводность, большая теплоемкость, высокая температура кипения), низкие затраты энергии на циркуляцию, пониженное коррозионное воздействие на конструкционные материалы реактора, относительная простота его очистки в процессе эксплуатации.

Первый отечественный демонстрационный энергетический реактор на быстрых нейтронах БН-350 тепловой мощностью 1000 МВт был введен в строй в 1973 году на восточном побережье Каспийского моря (см. "Наука и жизнь" № 11, 1976 г. - Прим. ред. ). Он имел традиционную для атомной энергетики петлевую схему передачи теплоты и паротурбинный комплекс для преобразования тепловой энергии. Часть тепловой мощности реактора использовалась для выработки электроэнергии, остальная шла на опреснение морской воды. Одна из отличительных особенностей схемы этой и последующих реакторных установок с натриевым теплоносителем - наличие промежуточного контура передачи теплоты между реактором и пароводяным контуром, продиктованное соображениями безопасности.

Реакторная установка БН-350, несмотря на сложность ее технологической схемы, успешно работала с 1973 по 1988 год (на пять лет дольше проектного времени) в составе Мангышлакского энергетического комбината и завода опреснения морской воды в г. Шевченко (ныне - Актау, Казахстан).

Большая разветвленность натриевых контуров в реакторе БН-350 вызывала беспокойство, поскольку в случае их аварийной разгерметизации мог возникнуть пожар. Поэтому, не дожидаясь пуска реактора БН-350, в СССР началось проектирование более мощного быстрого реактора БН-600 интегральной конструкции, в котором натриевые трубопроводы большого диаметра отсутствовали и почти весь радиоактивный натрий первого контура был сосредоточен в корпусе реактора. Это позволило практически полностью исключить опасность разгерметизации первого натриевого контура, снизить пожарную опасность установки, повысить уровень радиационной безопасности и надежности реактора.

Реакторная установка БН-600 надежно работает с 1980 года в составе третьего энергоблока Белоярской АЭС. Сегодня это самый мощный из действующих в мире реакторов на быстрых нейтронах, который служит источником уникального эксплуатационного опыта и базой для натурной отработки усовершенствованных конструкционных материалов и топлива.

Во всех последующих проектах реакторов этого типа в России, так же как и в большинстве проектов коммерческих быстрых реакторов, разработанных за рубежом, используется интегральная конструкция.

Обеспечение безопасности быстрых реакторов

Уже при проектировании первых энергетических реакторов на быстрых нейтронах большое внимание уделялось вопросам обеспечения безопасности как при их нормальной работе, так и при аварийных ситуациях. Направления поиска соответствующих проектных решений определялись требованием исключить недопустимые воздействия на окружающую среду и население за счет внутренней самозащищенности реактора, применения эффективных систем локализации потенциально возможных аварий, ограничивающих их последствия.

Самозащищенность реактора основана в первую очередь на действии отрицательных обратных связей, стабилизирующих процесс деления ядерного топлива при повышении температуры и мощности реактора, а также на свойствах используемых в реакторе материалов. Для иллюстрации внутренне присущей быстрым реакторам безопасности укажем некоторые их особенности, связанные с использованием в них натриевого теплоносителя. Высокая температура кипения натрия (883oС при нормальных физических условиях) позволяет поддерживать в корпусе реактора давление, близкое к атмосферному. Это упрощает конструкцию реактора и повышает его надежность. Корпус реактора не подвергается в процессе работы большим механическим нагрузкам, поэтому его разрыв еще менее вероятен, чем в существующих реакторах с водой под давлением, где он относится к классу гипотетических. Но даже такая авария в быстром реакторе не представляет опасности с точки зрения надежного охлаждения ядерного топлива, поскольку корпус окружен герметичным страховочным кожухом, а объем возможной утечки натрия в него незначителен. Разгерметизация трубопроводов с натриевым теплоносителем в быстром реакторе интегральной конструкции также не приводит к опасной ситуации. Поскольку теплоемкость натрия достаточно велика, даже при полном прекращении отвода тепла в пароводяной контур температура теплоносителя в реакторе будет повышаться со скоростью примерно 30 градусов в час. При нормальной работе температура теплоносителя на выходе из реактора составляет 540oС. Значительный запас температуры до закипания натрия дает резерв времени, достаточный, чтобы принять меры, ограничивающие последствия подобной маловероятной аварии.

В проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, приняты дополнительные меры, обеспечивающие сохранение герметичности реактора и исключающие недопустимые воздействия на окружающую среду, даже при гипотетической крайне маловероятной аварии с расплавлением активной зоны реактора.

Блочный щит управления реактора БН-600.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было ни аварий со сверхнормативными выбросами радиоактивности, ни облучения персонала и тем более местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, ими легко управлять. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует его пожароопасность. Утечки и горение натрия персонал уверенно обнаруживает, а их последствия надежно ликвидирует. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии со стороны.

Технико-экономические показатели быстрых реакторов

Особенности натриевой технологии, повышенные меры безопасности, консервативный выбор проектных решений первых реакторов - БН-350 и БН-600 стали причинами более высокой их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако их создавали главным образом для проверки работоспособности, безопасности и надежности быстрых реакторов. Эта задача и была решена их успешной эксплуатацией. При создании следующей реакторной установки - БН-800, предназначенной для массового использования в атомной энергетике, больше внимания уделили технико-экономическим характеристикам, и в результате по удельным капитальным затратам удалось существенно приблизиться к ВВЭР-1000 - основному типу отечественных энергетических реакторов на медленных нейтронах.

К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал дальнейшего технико-экономического совершенствования. К основным направлениям улучшения их экономических характеристик при одновременном повышении уровня безопасности относятся: повышение единичной мощности реактора и основных компонентов энергоблока, совершенствование конструкции основного оборудования, переход на закритические параметры пара с целью увеличения термодинамического кпд цикла преобразования тепловой энергии, оптимизация системы обращения со свежим и отработавшим топливом, увеличение глубины выгорания ядерного топлива, создание активной зоны с высоким внутренним коэффициентом воспроизводства (КВ) - до 1, увеличение срока службы до 60 лет и более.

Совершенствование отдельных видов оборудования, как показали конструкторские проработки, выполненные в ОКБМ, может оказать весьма существенное влияние на улучшение технико-экономических показателей и реакторной установки, и энергоблока в целом. Например, проработки по совершенствованию системы перегрузки перспективного реактора БН-1800 показали возможность значительного уменьшения металлоемкости этой системы. Замена модульных парогенераторов на корпусные оригинальной конструкции позволяет значительно уменьшить их стоимость, а также площадь, объем и материалоемкость парогенераторного отделения энергоблока.

Как влияет мощность реактора и технологическое совершенствование оборудования на металлоемкость и уровень капитальных затрат, можно видеть из таблицы.

Совершенствование быстрых реакторов, естественно, потребует определенных усилий со стороны промышленных предприятий, научных и проектных организаций. Так, для увеличения глубины выгорания ядерного топлива предстоит разработать и освоить производство конструкционных материалов активной зоны реактора, более стойких к нейтронному облучению. Работы в этом направлении в настоящее время ведутся.

Быстрые реакторы могут служить не только для получения энергии. Потоки нейтронов высокой энергии способны эффективно "сжигать" наиболее опасные долгоживущие радионуклиды, образующиеся в отработавшем ядерном топливе. Это имеет принципиальное значение для решения проблемы обращения с радиоактивными отходами атомной энергетики. Дело в том, что период полураспада некоторых радионуклидов (актиноидов) намного превышает научно обоснованные сроки стабильности геологических формаций, которые рассматриваются в качестве мест окончательного захоронения радиоактивных отходов. Поэтому, применив замкнутый топливный цикл с выжиганием актиноидов и трансмутацией долгоживущих продуктов деления в короткоживущие, можно радикально решить проблему обезвреживания отходов атомной энергетики и многократно уменьшить объем радиоактивных отходов, подлежащих захоронению.

Перевод атомной энергетики, наряду с "тепловыми" реакторами, на быстрые реакторы-бридеры, а также на замкнутый топливный цикл позволит создать безопасную энергетическую технологию, в полной мере отвечающую требованиям устойчивого развития человеческого общества.

December 25th, 2013

Этап физического пуска реактора БН-800 на быстрых нейтронах началсясегодня на Белоярской АЭС, сообщил РИА Новости представитель Росэнергоатома.

В ходе этого этапа, который может продлиться несколько недель, реактор будет заполнен жидким натрием и затем в него будет загружено ядерное топливо. Представитель Росэнергоатома пояснил, что по завершении физического пуска энергоблок будет признан ядерной установкой.

Энергоблок №4 с реактором БН-800 Белоярской атомной электростанции (БАЭС) выйдет на полную мощность к концу 2014 года, сообщил журналистам в среду первый замгендиректора госкорпорации «Росатом» Александр Локшин.

«На полную мощность блок должен выйти к концу года», - сказал он, уточнив, что речь идет о конце 2014 года.

По его словам, в настоящее время идет заполнение контура натрием, окончание физического пуска планируется к середине апреля. По его словам, энергоблок готов к физическому пуску на 99,8%. Как отметил гендиректор ОАО «Концерн Росэнергоатом» Евгений Романов, в конце лета намечен энергопуск объекта.

Энергоблок с реактором БН-800 является развитием уникального реактора БН-600 на Белоярской АЭС, который находится около 30 лет в опытно-промышленной эксплуатации. Технологиями реакторов на быстрых нейтронах в мире обладают очень небольшое количество стран, и Россия является мировым лидером в этом направлении.

Давайте узнаем о нем подробнее …

Реакторный (центральный) зал БН-600

В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС – Белоярская (с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах – БН-600

Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» – это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы – реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей– веществ, при столкновениях с ядрами которых нейтроны теряют энергию.

Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.

Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120–140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода– замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок– в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder– производитель).

Зигзаги истории

Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi – уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).

В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.

Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985–1997), Monju (Япония, 1994–1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.

Строительство БН-800

Они возвращаются

Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране – всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!

Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Гладко только на бумаге

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии – от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, – объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. – Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, – оно лишь чуть выше атмосферного».

По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы – как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».

«Проблемы действительно были одни и те же, – добавляет директор Белоярской АЭС Николай Ошканов, – но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,– открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Быстрое будущее

«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, – говорит Николай Ошканов.– Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».

Реактор на быстрых нейтронах БН-800 (вертикальный разрез)
Что у него внутри

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями

370 топливных сборок образуют три зоны с различным обогащением по урану-235 – 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).

Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) – трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.

В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней – головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.

Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» – фотонейтронный источник (гамма-излучатель плюс бериллий).

Как устроен реактор БН-600

Реактор имеет интегральную компоновку, то есть в корпусе реактора расположена активная зона (1), а также три петли (2) первого контура охлаждения, каждая из которых имеет свой главный циркуляционный насос (3) и два промежуточных теплообменника (4). Теплоносителем служит жидкий натрий, который прокачивается через активную зону снизу вверх и разогревается с 370 до 550°С

Проходя через промежуточные теплообменники, он передает тепло натрию во втором контуре (5), который уже поступает в парогенераторы (6), где испаряет воду и перегревает пар до температуры 520°С (при давлении 130 атм). Пар подается на турбины поочередно в цилиндры высокого (7), среднего (8) и низкого (9) давления. Отработанный пар конденсируется за счет охлаждения водой (10) из пруда-охладителя и вновь поступает в парогенераторы. Три турбогенератора (11) Белоярской АЭС выдают 600 МВт электрической мощности. Газовая полость реактора заполнена аргоном под очень небольшим избыточным давлением (около 0,3 атм).

Перегрузка вслепую

В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотные пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены.

Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования – менее 0,01 градуса), усилий извлечения и постановки. На работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне.

В 1983 г. на базе БН-600 предприятием был разработан проект усовершенствованного реактора БН-800 для энергоблока мощностью 880 МВт(э). В 1984 г. были начаты работы по сооружению двух реакторов БН-800 на Белоярской и новой Южно-Уральской АЭС. Последующая задержка сооружения этих реакторов была использована для доработки проекта с целью дальнейшего повышения его безопасности и улучшения технико-экономических показателей. Работы по сооружению БН-800 были возобновлены в 2006 г. на Белоярской АЭС (4-й энергоблок) и должны быть завершены в 2014 г.

Перед строящимся реактором БН-800 поставлены следующие важные задачи:

  • Обеспечение эксплуатации на MOX-топливе.
  • Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла.
  • Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.
  • Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем:
    • испытания и аттестация перспективного топлива и конструкционных материалов;
    • демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.

Ведётся разработка проекта усовершенствованного коммерческого реактора БН-1200 мощностью 1220 МВт.

Реактор БН-1200 (вертикальный разрез)

Планируется следующая программа реализации этого проекта:

  • 2010…2016 гг. – разработка техпроекта реакторной установки и выполнение программы НИОКР.
  • 2020 г. – ввод в действие головного энергоблока на МОХ- топливе и организация его централизованного производства.
  • 2023…2030 гг. – ввод в эксплуатацию серии энергоблоков суммарной мощностью около 11 ГВт.

Слайд 11. В активной зоне реактора на быстрых нейтронах размещаются твэлы с высокообогащенным 235U топливом. Активная зона окружается зоной воспроизводства, состоящей

из твэлов, содержащих топливное сырье (обедненный 228U или 232Th). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Достоинством быстрых реакторов является возможность организации в них расширенного воспроизводство ядерного топлива, т.е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

Основное назначение реактора на быстрых нейтронах - производство оружейного плутония (и некоторых других делящихся актинидов), компонентов атомного оружия. Но подобные реакторы находят применение и в сфере энергетики, в частности, для обеспечения расширенного воспроизводства делящегося плутония 239Pu из 238U с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом.

Слайд 12. Реактор-размножитель, ядерный реактор, в котором «сжигание» ядерного топлива сопровождается расширенным воспроизводством вторичного топлива. В реакторе-размножителе, нейтроны, освобождающиеся в процессе деления ядерного топлива (например, 235U), взаимодействуют с ядрами помещенного в реактор сырьевого материала (например,238U), в результате образуется вторичное ядерное топливо (239Pu). В реакторе-размножителе типа бридер воспроизводимое и сжигаемое топливо представляют собой изотопы одного и того же химического элемента (например, сжигается 235U, воспроизводится 233U), в реакторе типа реактор - конвертер - изотопы разных химических элементов (например, сжигается 235U, воспроизводится 239Pu).

В быстрых реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа 235U . Такой реактор обеспечивает расширенное воспроизводство ядерного горючего (в нем наряду с исчезновением атомов, способных к делению, происходит регенерация некоторых из них (например, образование 239Pu)). Основное число делений вызывается быстрыми нейтронами, причем каждый акт деления сопровождается появлением большого (по сравнению с делением тепловыми нейтронами) числа нейтронов, которые при захвате ядрами 238U превращает их (посредством двух последовательных в--распадов) в ядра 239Pu, т.е. нового ядерного топлива. Это значит, что, например, на 100 разделившихся ядер горючего (235U) в реакторах на быстрых нейтронах образуется 150 ядер 239Pu, способных к делению. (Коэффициент воспроизводства таких реакторов достигает 1,5, т.е. на 1 кг 235U получается до 1,5 кг Pu). 239Pu можно использовать в реакторе как делящийся элемент.

С точки зрения развития мировой энергетики, преимущество реактора на быстрых нейтронах (БН) состоит в том, что он позволяет использовать как топливо изотопы тяжелых элементов, не способные к делению в реакторах на тепловых нейтронах. В топливный цикл могут быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U - основного горючего для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного горючего 235U. Отметим, что в обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Слайд 13. БН - ядерный реактор, на быстрых нейтронах. Корпусной реактор-размножитель. Теплоносителем первого и второго контуров обычно является натрий. Теплоноситель третьего контура - вода и пар. В быстрых реакторах замедлитель отсутствует.

К достоинствам быстрых реакторов можно отнести большую степень выгорания топлива (т.е. больший срок кампании), а к недостаткам - дороговизну, из-за невозможности использования простейшего теплоносителя - воды, конструкционной сложности, высоких капитальных затрат и высокой стоимости высокообогащенного топлива.

Высокообогащенный уран - уран с содержанием изотопа урана-235 по массе равным или более 20 %. Для обеспечения высокой концентрации ядерного топлива необходимо достижение максимального тепловыделения на единицу объема активной зоны. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах. Теплосъём в таком реакторе можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоемких газовых теплоносителей, обладающих наилучшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы. Обычно используются жидкие металлы, например, расплав натрия (температура плавления натрия 98 °C). К недостаткам натрия следует отнести его высокую химическую активность по отношению к воде, воздуху и пожароопасность. Температура теплоносителя на входе в реактор - 370 оС, а на выходе - 550, что в десять раз выше аналогичных показателей, скажем, для ВВЭР - там температура воды на входе - 270 градусов, а на выходе - 293.