Исполнение желаний

Ядерные энергетические установки космического назначения. Объекты использования атомной энергии (оиаэ) Предприятия по производству ядерного горючего, высоко-обогащенного урана и оружейного плутония

К сфере деятельности Управления по регулированию безопасности объектов ядерного топливного цикла, ядерных энергетических установок судов и радиационно опасных объектов относятся:

осуществление государственного регулирования ядерной и радиационной безопасности применительно к объектам и видам деятельности в области использования атомной энергии:

1. Объекты использования атомной энергии

1.1. Ядерные установки:

1.1.1. сооружения и комплексы с промышленными ядерными реакторами;

1.1.2. сооружения, комплексы, установки с ядерными материалами, предназначенные для производства, переработки, транспортирования ядерного топлива и ядерных материалов (включая добычу урановых руд, гидрометаллургическую переработку, аффинаж, сублиматное производство, металлургическое производство, разделение изотопов урана, радиохимическую переработку ядерного топлива), а также для обращения с образующимися при этом радиоактивными отходами.

1.1.3. ядерные энергетические установки судов, в том числе плавучих энергоблоков;

1.1.4. суда атомно-технологического обслуживания;

1.1.5. стенды-прототипы ядерных энергетических установок судов;

1.1.6. космические и летательные аппараты с ядерными источниками энергии;

1.2. радиационные источники:

1.2.1. сооружения, комплексы и установки, в которых содержатся радиоактивные вещества и (или) радиоактивные отходы, расположенные на территории ядерной установки и не предусмотренные в проекте ядерной установки;

1.2.2. радиационные источники, радиоактивные вещества и радиоактивные отходы, не находящиеся на территории ядерной установки;

1.3. пункты хранения ядерных материалов, радиоактивных веществ или радиоактивных отходов (за исключением пунктов хранения, расположенных на площадках атомных станций или относящихся к ним):

1.3.1. стационарные объекты и сооружения, предназначенные для хранения ядерных материалов, радиоактивных веществ и радиоактивных отходов, включая объекты и сооружения, расположенные на территории ядерной установки и не предусмотренные в проекте ядерной установки;

1.3.2. стационарные объекты и сооружения, предназначенные для захоронения радиоактивных отходов.

2. Виды деятельности в области использования атомной энергии

2.1. проектирование, конструирование, размещение, сооружение, эксплуатация, вывод из эксплуатации объектов использования атомной энергии, указанных в пунктах 1.1, 1.2 и 1.3 настоящего приложения;

2.2. обращение с ядерными материалами и радиоактивными веществами, в том числе при разведке и добыче урановых руд, при производстве, использовании, переработке, транспортировании всеми видами транспорта и хранении ядерных материалов и радиоактивных веществ;

2.3. обращение с радиоактивными отходами при их хранении, переработке, транспортировании и захоронении;

2.4. использование ядерных материалов и (или) радиоактивных веществ при проведении научно-исследовательских и опытно-конструкторских работ;

2.5 проектирование и конструирование ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов (для объектов использования атомной энергии, регулирование безопасности которых относится к компетенции Управления согласно п.п. 1 и 2);

2.6. конструирование и изготовление оборудования для ядерных установок, радиационных источников, пунктов хранения ядерных материалов и радиоактивных веществ, хранилищ радиоактивных отходов;

Организация и осуществление государственного надзора за учетом и контролем ядерных материалов, радиоактивных веществ и радиоактивных отходов и обеспечением гарантий их санкционированного распространения и контролируемого использования.

В мире сейчас наблюдается активизация в развитии атомной энергетики. Если говорить о масштабности национальных проектов, то лидерами являются Индия и Китай. В ближайшие несколько лет мы станем свидетелями того, что в каждой из этих стран будет одновременно сооружаться более 10 энергетических блоков. Современная мировая атомная энергетика насчитывает 442 действующих блока.

Ощутимую толику вносит ядерная энергетика в экономику промышленно развитых стран, имеющих недостаточное количество природных энергоресурсов. К таким странам относится Франция, Швеция, Бельгия, Финляндия, Швейцария. В этих странах энергия, производимая на АЭС, занимает от одной четвертой до половины общей производимой энергии. А энергия, производимая на АЭС в США, составляет 20% от всей производимой на Земле ядерной энергии.

Страны, взявшие курс на развитие атомной энергетики - Франция, Япония и ряд других (рис. 1) за 25 лет коренным образом изменили энергетический баланс своей экономики и достигли выдающихся успехов в конверсии углеводородной энергетики, существенно подняли роль атомной энергетики, решили важные экологические проблемы .

Вместе с тем не стоит забывать, что ядерная энергетика не терпит к себе халатного отношения. Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира. Ошибки нескольких человек могут привести к необратимым последствиям и изменениям в жизни огромных сообществ или даже стран.

Рис. 1.

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационно-опасными объектами (РОО). К таким объектам относятся:

  • 1) предприятия ядерного топливного цикла (предприятия ЯТЦ);
  • 2) атомные станции (АС): атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АСТ);
  • 3) объекты с ядерными энергетическими установками (объекты с ЯЭУ): корабельные, космические;
  • 4) исследовательские ядерные реакторы;
  • 5) ядерные боеприпасы (ЯБП) и склады их хранения;
  • 6) установки технологического, медицинского назначения и источники тепловой и электрической энергии, в которых используются радионуклиды.

Выброс радиоактивных веществ за пределы ядерно-энергетического реактора, в результате чего может создаться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

При прогнозе радиационной обстановки учитывается масштаб аварии, тип реактора, характер его разрушения и характер выхода радиоактивных веществ (РВ) из активной зоны, а также метеоусловия в момент выброса РВ.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют три типа радиационных аварий (табл. 2).

Таблица 2. Классификация радиационных аварий

С точки зрения медицинских последствий, контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп: малые, средние, большие, крупные и катастрофические. радиация ядерный энергетика авария

К малым радиационным авариям относятся инциденты, не связанные с серьезными медицинскими последствиями и характеризующиеся только экономическими потерями. При этом возможно облучение лиц различной категории. Дозы лучевого воздействия не должны превышать установленных НРБ-96 санитарных норм.

Для больших аварий используются дополнительные подразделения по критерию распространенности, связанные с радиоактивным загрязнением: персонала и рабочих мест; производственного помещения; здания; территории; санитарно-защитной зоны.

Четвертая группа радиационных аварий (крупные аварии) объединяет инциденты, при которых возможно чисто внешнее, совместное внешнее и внутреннее облучение небольшого числа лиц.

В пятую группу (катастрофические аварии) относятся радиационные аварии, при которых наблюдается совместное внешнее и внутреннее облучение больших контингентов населения, проживающего в одном или нескольких регионах.

Существует достаточно много факторов опасности ядерных реакторов, в числе которых можно выделить основные.

  • 1. Возможность аварии с разгоном реактора . При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
  • 2. Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их. Например, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
  • 3. Необходимость захоронения отработавшего реактора . На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.
  • 4. Радиоактивное облучение персонала. Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции .
Журнал "ИТОГИ", N31, 10.08.1998. *Атомная Россия.* По материалам сборника "Атом без грифа "секретно": точки зрения". Москва - Берлин, 1992. (Hазвания объектов и предприятий приводятся в том виде, как они были известны до переименования)

Атомные электростанции

  • Балаковская (Балаково, Саратовская область).
  • Белоярская (Белоярский, Екатеринбургская область).
  • Билибинская АТЭЦ (Билибино, Магаданская область).
  • Калининская (Удомля, Тверская область).
  • Кольская (Полярные Зори, Мурманская область).
  • Ленинградская (Сосновый Бор, Санкт-Петербургская область).
  • Смоленская (Десногорск, Смоленская область).
  • Курская (Курчатов, Курская область).
  • Hововоронежская (Hововоронежск, Воронежская область).

Особорежимные города ядерного оружейного комплекса

  • Арзамас-16 (ныне Кремлев, Hижегородская область). ВHИИ экспериментальной физики. Разработка и конструирование ядерных зарядов. Опытно-экспериментальный завод "Коммунист". Электромеханический завод "Авангард" (серийное производство).
  • Златоуст-36 (Челябинская область). Серийное прозводство ядерных боеголовок (?) и баллистических ракет для подводных лодок (БРПЛ).
  • Красноярск-26 (ныне Железногорск). Подземный горнохимический комбинат. Переработка облученного топлива с АЭС, производство оружейного плутония. Три ядерных реактора.
  • Красноярск-45. Электромеханический завод. Обогащение урана (?). Серийное производство баллистических ракет для подводных лодок (БРПЛ). Создание космических аппаратов, главным образом ИСЗ военного, разведывательного назначения.
  • Свердловск-44. Серийная сборка ядерных боеприпасов.
  • Свердловск-45. Серийная сборка ядерных боеприпасов.
  • Томск-7 (ныне Северск). Сибирский химических комбинат. Обогащение урана, производство оружейного плутония.
  • Челябинск-65 (ныне Озерск). ПО "Маяк". Переработка облученного топлива с АЭС и судовых ЯЭУ, производство оружейного плутония.
  • Челябинск-70 (ныне Снежинск). ВHИИ технической физики. Разработка и конструирование ядерных зарядов.
  • Полигон для испытаний ядерного оружия

  • Северный (1954-1992 гг.). С 27.02.1992 г. - Центральный полигон Российской Федерации.
  • Hаучно-исследовательские и учебные атомные центры и учреждения с исследовательскими ядерными реакторами

  • Сосновый Бор (Санкт-Петербургская область). Учебный центр ВМФ.
  • Дубна (Московская область). Объединенный институтядерных исследований.
  • Обнинск (Калужская область). HПО "Тайфун". Физико-энергетический институт (ФЭИ). Установки "Топаз-1", "Топаз-2". Учебный центр ВМФ.
  • Москва. Институт атомной энергии им. И. В. Курчатова (термоядерный комплекс АHГАРА-5). Московский инженерно-физический институт (МИФИ). Hаучно-исследовательское производственное объединение "Айлерон". Hаучно-исследовательское-производственное объединение "Энергия". Физический институт Российской Академии наук. Московский физико-технический институт (МФТИ). Институт теоретической и экспериментальной физики.
  • Протвино (Московская область). Институт физики высоких энергии. Ускоритель элементарных частиц.
  • Свердловский филиал Hаучно-исследовательского и конструкторского института экспериментальных технологий. (В 40 км от Екатеринбурга).
  • Hовосибирск. Академгородок Сибирского отделения РАH.
  • Троицк (Московская область). Институт термоядерных исследований (установки "Токомак").
  • Димитровград (Ульяновская область). HИИ атомных реакторов им. В.И.Ленина.
  • Hижний Hовгород. Проектно-конструкторское бюро ядерных реакторов.
  • Санкт-Петербург. Hаучно-исследовательское и производственное объединение "Электрофизика". Радиевый институт им. В.Г.Хлопина. Hаучно-исследовательский и проектный институт энергетической технологии. HИИ радиационной гигиены Минздрава России.
  • Hорильск. Экспериментальный ядерный реактор.
  • Подольск. Hаучно-исследовательское производственное объединение "Луч".
  • Месторождения урана, предприятия по его добыче и первичной обработке

  • Лермонтов (Ставропольский край). Ураново-молибденовые включения вулканических пород. ПО "Алмаз". Добыча и обогащение руды.
  • Первомайский (Читинская область). Забайкальский горнообогатительный комбинат.
  • Вихоревка (Иркутская область). Добыча (?) урана и тория.
  • Алдан (Якутия). Добыча урана, тория и редкоземельных элементов.
  • Слюдянка (Иркутская область). Месторождение уран-содержащих и редкоземельных элементов.
  • Краснокаменск (Читинская область). Урановый рудник.
  • Борск (Читинская область). Выработанный (?) урановый рудник - так называемое "ущелье смерти", где добычу руды вели узники сталинских легерей.
  • Ловозеро (Мурманская область). Урановые и ториевые минералы.
  • Район Онежского озера. Урановые и ванадиевые минералы.
  • Вишневогорск, Hовогорный (Центральный Урал). Урановая минерализация.
  • Урановая металлургия

  • Электросталь (Московская область). ПО "Машиностроительный завод".
  • Hовосибирск. ПО "Завод химических концентратов".
  • Глазов (Удмуртия). ПО "Чепецкий механический завод".
  • Предприятия по производству ядерного горючего, высоко-обогащенного урана и оружейного плутония

  • Челябинск-65 (Челябинская область). ПО "Маяк".
  • Томск-7 (Томская область). Сибирский химкомбинат.
  • Красноярск-26 (Красноярский край). Горнохимический комбинат.
  • Екатеринбург. Уральский электрохимический завод.
  • Кирово-Чепецк (Кировская область). Химкомбинат им. Б. П. Константинова.
  • Ангарск (Иркутская область). Комбинат химического электролиза.
  • Судостроительные и судоремонтные заводы и базы атомного флота

  • Санкт-Петербург. Ленинградское адмиралтейское объединение. ПО "Балтийский завод".
  • Северодвинск. ПО "Севмашпредприятие", ПО "Север".
  • Hижний Hовгород. ПО "Красное Сормово".
  • Комсомольск-на-Амуре. Судостроительный завод "Ленинский комсомол".
  • Большой Камень (Приморский край). Судоремонтный завод "Звезда".
  • Мурманск. Техническая база ПТО "Атомфлот", судоремонтный завод "Hерпа".
  • Базы АПЛ Северного флота

  • Западная Лица (губа Hерпичья).
  • Гаджиево.
  • Полярный.
  • Видяево.
  • Йоканьга.
  • Гремиха.
  • Базы АПЛ Тихоокеанского флота

  • Рыбачий.
  • Владивосток (залив Владимира и бухта Павловского),
  • Советская Гавань.
  • Hаходка.
  • Магадан.
  • Александровск-Сахалинский.
  • Корсаков.
  • Места складского хранения баллистических ракет для подводных лодок (БРПЛ)

  • Ревда (Мурманская область).
  • Hенокса (Архангельская область).
  • Пункты снаряжения ракет ядерными боеголовками и погрузки в подводные лодки

  • Северодвинск.
  • Губа Окольная (Кольский залив).
  • Места временного хранения облученного ядерного топлива и предприятия по его переработке

  • промплощадки АЭС.
  • Мурманск. Лихтер "Лепсе", плавбаза "Имандра" ПТО "Атом-флот".
  • Полярный. Техническая база Северного флота.
  • Йоканьга. Техническая база Северного флота.
  • Бухта Павловского. Техническая база Тихоокеанского флота.
  • Челябинск-65. ПО "Маяк".
  • Красноярск-26. Горнохимический комбинат.
  • Промышленные накопители и региональные хранилища (могильники) РАО

  • промплощадки АЭС.
  • Красноярск-26. Горнохимический комбинат, РТ-2.
  • Челябинск-65. ПО "Маяк".
  • Томск-7. Сибирский химкомбинат.
  • Северодвинск (Архангельская область). Промплощадка судоремонтного завода "Звездочка" ПО "Север".
  • Большой Камень (Приморский край). Промплощадка судоремонтного завода "Звезда".
  • Западная Лица (губа Андреева). Техническая база Северного флота.
  • Гремиха. Техническая база Северного флота.
  • Шкотово-22 (бухта Чажма). Судоремонтная и техническая база Тихоокеанского флота.
  • Рыбачий. Техническая база Тихоокеанского флота.
  • Места отстоя и утилизации выведенных из эксплуатации кораблей военно-морского флота и гражданских судов с ядерными энергетическими установками

  • Полярный, база Северного флота.
  • Гремиха, база Северного флота.
  • Йоканьга, база Северного флота.
  • Западная Лица (губа Андреева), база Северного флота.
  • Северодвинск, заводская акватория ПО "Север".
  • Мурманск, техническая база "Атомфлота".
  • Большой Камень, акватория судоремонтного завода "Звезда".
  • Шкотово-22 (бухта Чажма),техническая база Тихоокеанского флота.
  • Советская Гавань, акватория военно-технической базы.
  • Рыбачий, база Тихоокеанского флота.
  • Владивосток (бухта Павловского, залив Владимира), базы Тихоокеанского флота.
  • Hеобъявленные районы сброса жидких и затопления твердых РАО

  • Места слива жидких РАО в Баренцевом море.
  • Районы затопления твердых радиоактивных отходов в мелководных заливах карской стороны архипелага Hовая Земля и в районе Hовоземельской глубоководной впадины.
  • Точка несанкционированного затопления лихтера "Hикель" с твердыми радиоактивными отходами.
  • Губа Черная архипелага Hовая Земля. Место отстоя опытного судна "Кит", на котором проводились эксперименты с боевыми отравляющими веществами.
  • Загрязненные территории

  • 30-километровая санитарная зона и районы, загрязненные радионуклидами в результате катастрофы 26.04.1986 г. на Чернобыльской АЭС.
  • Восточно-Уральский радиоактивный след, образовавшийся в результате взрыва 29.09.1957 г. емкости с высокоактивными отходами на предприятии в Кыштыме (Челябинск-65).
  • Радиоактивное загрязнение бассейна рек Теча-Исеть-Тобол-Иртыш-Обь в результате многолетнего сброса отходов радиохимического производства на объектах ядерного (оружейного и энергетического) комплекса в Кыштыме и разноса радиоизотопов из открытых накопителей радиоактивных отходов вследствие ветровой эрозии.
  • Радиоактивное загрязнение Енисея и отдельных участков поймы в результате промышленной эксплуатации двух прямоточных водяных реакторов горнохимического комбината и функционирования хранилища радиоактивных отходов в Красноярске-26.
  • Радиоактивное загрязнение территории в санитарно-защитной зоне Сибирского химкомбината (Томск-7) и за ее пределами.
  • Официально признанные санитарные зоны в местах проведения первых ядерных взрывов на земле, под водой и в атмосфере на полигонах для испытания ядерного оружия на Hовой Земле.
  • Тоцкий район Оренбургской области. Место проведения войсковых учений на стойкость личного состава и военной техники к поражающим факторам ядерного взрыва 14.09.1954 г. в атмосфере.
  • Радиоактивный выброс в результате несанкционированного пуска реактора АПЛ, сопровождавшегося пожаром, на судоремонтном заводе "Звездочка" в Северодвинске (Архангельская область) 12.02.1965 г.
  • Радиоактивный выброс в результате несанкционированного пуска реактора АПЛ, сопровождавшегося пожаром, на судостроительном заводе ПО "Красное Сормово" в Hижнем Hовгороде в 1970 г.
  • Локальное радиоактивное загрязнение акватории и прилегающей местности в результате несанкционированного пуска и теплового взрыва реактора АПЛ при его перегрузке на судоремонтном заводе Военно-морского флота в Шкотово-22 (бухта Чажма) в 1985 году.
  • Загрязнение прибрежных вод архипелага Hовая Земля и открытых районов Карского и Баренцева морей вследствие слива жидких и затопления твердых радиоактивных отходов судами ВМФ и "Атомфлота".
  • Места проведения подземных ядерных взрывов в интересах народного хозяйства, где отмечен выход продуктов ядерных реакций на поверхность земли или возможна подземная миграция радионуклидов.

В 2009 году Комиссией при Президенте Российской Федерации по модернизации и технологическому развитию экономики России принято решение о реализации проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса».
АО «НИКИЭТ» определен Главным конструктором реакторной установки. Федеральное космическое агентство выдало НИКИЭТ лицензию № 981К от 29.08.2008 на осуществление космической деятельности. Проект не имеет мировых аналогов.

ОПЫТ СОЗДАНИЯ ЯДЕРНЫХ ЭНЕРГЕТИЧЕСКИХ И ЭНЕРГОДВИГАТЕЛЬНЫХ УСТАНОВОК КОСМИЧЕСКОГО НАЗНАЧЕНИЯ

На Семипалатинском полигоне с 1960 по 1989 год проводились работы по созданию ядерного ракетного двигателя.

Были созданы:

  • реакторный комплекс ИГР;
  • стендовый комплекс «Байкал-1» с реактором ИВГ-1 и двумя рабочими местами для отработки изделий 11Б91;
  • реактор РА (ИРГИТ).

РЕАКТОР ИГР

Реактор ИГР является импульсным реактором на тепловых нейтронах с гомогенной активной зоной, представляющей собой кладку из содержащих уран-графитовых блоков, собранных в виде колонн. Отражатель реактора сформирован из аналогичных блоков, не содержащих урана.

Реактор не имеет принудительного охлаждения активной зоны. Выделившееся в процессе работы реактора тепло аккумулируется кладкой, а затем через стенки корпуса реактора передается воде контура расхолаживания.

РЕАКТОР ИГР


РЕАКТОР ИВГ-1 И СИСТЕМЫ ПОДАЧИ КОМПОНЕНТОВ


НАЗЕМНАЯ ОТРАБОТКА ТВС ЯРД (ИВГ-1)

ДОСТИГНУТЫЕ РЕЗУЛЬТАТЫ

1962–1966 годы

В реакторе ИГР проведены первые испытания модельных твэлов ЯРД. Результаты испытаний подтвердили возможность создания твэлов с твердыми поверхностями теплообмена, работающих при температурах свыше 3000 К, удельных тепловых потоках до 10 МВт/м2 в условиях мощного нейтронного и гамма-излучений (проведен 41 пуск, испытано 26 модельных ТВС различных модификаций).

1971–1973 годы

В реакторе ИГР проведены динамические испытания высокотемпературного топлива ЯРД на термопрочность, в ходе которых реализованы следующие параметры:

  • удельное энерговыделение в топливе – 30 кВт/см3
  • удельный тепловой поток с поверхности твэлов – 10 МВт/м2
  • температура теплоносителя – 3000 К
  • скорость изменения температуры теплоносителя при увеличении и снижении мощности – от 350 до 1000 К/с
  • длительность номинального режима – 5 с

1974–1989 годы

В реакторах ИГР и ИВГ-1 проведены испытания ТВС различных типов реакторов ЯРД, ЯЭДУ и газодинамических установок с водородным, азотным, гелиевым и воздушным теплоносителями.

1971–1993 годы

Проведены исследования выхода из топлива в газообразный теплоноситель (водород, азот, гелий, воздух) в диапазоне температуры 400…2600 К и осаждения в газовых контурах продуктов деления, источниками которых являлись экспериментальные ТВС.

Они осуществляют добычу урановой руды, ее обогащение и изготовление топливных элементов для ядерных энергетических реакторов (ЯЭР), переработку радиоактивных отходов. Их хранение и окончательное размещение.

ЯТЦ делятся на 3 группы:

1. Предприятия урановой промышленности.

2. Радиохимические заводы.

3. Места захоронения радиоактивных заводов.

К предприятиям урановой промышленности относятся объекты, осуществляющие:

Добычу урановой руды (открытой разработкой или из шахт);

Обработку урановой руды, включающие предприятия по очистке урановой руды на специальных дробилках в несколько этапов
и обогащению методом газовой диффузии.

Процесс приготовления ядерного топлива включает получение порошкообразного диоксида урана, его таблетирование методом порошковой металлургии, изготовление тепловыделяющих элементов (ТВЭ) и тепловыделяющих сборок (ТВС), которые в последующем используются в ЯЭР.

Отработанное в ядерных реакторах топливо может отправляться на захоронение, но может быть переработано с извлечением необходимых компонентов и частично повторно (дополнительно) использовано.

Переработка отработанного топлива осуществляется на перерабатывающих предприятиях (радиохимических заводах), на которых осуществляется разделка ТВЭ, растворение топлива, химическое отделение урана, плутония, цезия, стронция, др. изотопов и изготовление различных расщепляющихся материалов (ядерного топлива в боеприпасах, источников ионизирующих излучений, индикаторов и т.д.).

Радиоактивные отходы радиохимических заводов направляются на захоронение, которое осуществляется в бетонных емкостях в естественных или искусственных полостях.

Наиболее характерными авариями на предприятиях ядерного топливного цикла являются:

Возгорание горючих компонентов и радиоактивных материа-
лов;

Превышение критической массы делящихся веществ;

Появление течей и разрывов в резервуарах-хранилищах;

Характерные аварии с готовыми изделиями.

Атомная станция (АС) - это электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую и тепловую. На АС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор (АЭС), и частично для подогрева теплоносителя (ACT, АТЭЦ

АС включает: ядерные энергетические реакторы, паровые турбины, системы трубопровода, конденсаторы.

АС включают: ядерные энергетические реакторы, паровые турбины, системы трубопроводов, конденсаторы, системы вывода генерируемой мощности и тепла.

В зависимости от используемого топлива, типа ядерной реакции и способа снятия тепла в мире разработано 7 основных типов ядерных энергетических реакторов. В России используются 4 типа реакторов:

Реакторы кипящего типа (ВВЭР-440) на тепловых нейтронах
с двухконтурным охлаждением реактора и съемом тепла водой;

Реакторы с водой под давлением (ВВЭР-1000);

Реакторы на быстрых нейтронах с охлаждением жидким натрием или магнием (БН);

Графитовые реакторы кипящего типа РБМК.

С точки зрения безопасности предпочтение имеют легководные реакторы типа ВВЭР-440 и ВВЭР-1000.

Основными причинами аварий на атомных станциях являются:

Нарушения технологической дисциплины оперативным персоналом АС и недостатки в его профессиональной подготовке;

Низкий уровень внимания и требовательности со стороны министерств и ведомств, организаций и учреждений, ответственных
за обеспечение безопасности АС на этапах проектирования, строительства и эксплуатации.

Объекты с ядерными энергетическими установками (ЯЭУ). Корабельные объекты с ЯЭУ оснащаются реакторами легководного и жидкометаллического типов. Принципиальными отличиями их от реакторов АС являются:

Использование в качестве топлива высокообогащенного урана;

Сравнительно малые размеры;

Высокая степень защиты (40-60 кгс/см 2 - для подводных лодок -и 10-20 кгс/см 2 -для надводных кораблей).

Специфическими причинами аварий на корабельных ЯЭУ являются: разгерметизация 1-го контура реактора и попадание забортной воды под биологическую защиту.

К войсковым атомным электростанциям (ВАЭС) относятся рециркуляцией теплоносителя. Особенностями ВАЭС являются:

Использования в качестве теплоносителя химически и пожароопасного вещества нитрина;

Отсутствие оболочки внешней защиты.

ВАЭС существуют в трех видах исполнения: плавучие, на ж.д. платформах и блочно-транспортные общим весом до 100 тонн.

Причинами аварий на ВАЭС служат:

Разгерметизация 1-го контура реактора;

Механические повреждения.

Отличительной особенностью космических ЯЭУ является их небольшой размер, что достигается использованием в качестве ядерного топлива высокоочищенного топлива с высоким содержанием стронция-90 и плутония-238. Специфические причины аварии на космических ЯЭУ: несанкционированный выход на запроектную мощность в результате удара или падения и нештатные ситуации на борту.

Ядерные боеприпасы (ЯБП) и взрывные устройства к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Часть из них находится на боевом дежурстве. К наиболее характерным аварийным ситуациям с ЯБП относятся: столкновение и опрокидывание транспортных средств с ЯБП; пожары в сборочных помещениях, хранилищах, комплексах и воздействие грозовых разрядов.

Рассмотрим классификацию радиоактивных загрязнений при авариях на РОО.

Радиоактивные загрязнения делятся на:

1. Источники загрязнения
а) Производственные

В процессе производственной деятельности;

При снятии с эксплуатации отработавших ЯЭУ;

б). Аварийные

Затрагивающие персонал

Затрагивающие население;

в) Ядерные боеприпасы

2. По масштабы загрязнения
а) локальные

в) массовые

3. По агрегатному состоянию
а)твердое

в)газообразное

4. По особенностям загрязнений
а)первичное

б)вторичное

в)многократное

5 . По способам загрязнения

а) аэрозольное

б) контактное

6 . По видам загрязнений

а) глубинные